(* Title: HOLCF/Tr.thy
Author: Franz Regensburger
*)
header {* The type of lifted booleans *}
theory Tr
imports Lift
begin
subsection {* Type definition and constructors *}
type_synonym
tr = "bool lift"
translations
(type) "tr" <= (type) "bool lift"
definition
TT :: "tr" where
"TT = Def True"
definition
FF :: "tr" where
"FF = Def False"
text {* Exhaustion and Elimination for type @{typ tr} *}
lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF"
unfolding FF_def TT_def by (induct t) auto
lemma trE [case_names bottom TT FF]:
"\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
unfolding FF_def TT_def by (induct p) auto
lemma tr_induct [case_names bottom TT FF]:
"\<lbrakk>P \<bottom>; P TT; P FF\<rbrakk> \<Longrightarrow> P x"
by (cases x rule: trE) simp_all
text {* distinctness for type @{typ tr} *}
lemma dist_below_tr [simp]:
"TT \<notsqsubseteq> \<bottom>" "FF \<notsqsubseteq> \<bottom>" "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT"
unfolding TT_def FF_def by simp_all
lemma dist_eq_tr [simp]:
"TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT"
unfolding TT_def FF_def by simp_all
lemma TT_below_iff [simp]: "TT \<sqsubseteq> x \<longleftrightarrow> x = TT"
by (induct x rule: tr_induct) simp_all
lemma FF_below_iff [simp]: "FF \<sqsubseteq> x \<longleftrightarrow> x = FF"
by (induct x rule: tr_induct) simp_all
lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT \<longleftrightarrow> x = FF"
by (induct x rule: tr_induct) simp_all
lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF \<longleftrightarrow> x = TT"
by (induct x rule: tr_induct) simp_all
subsection {* Case analysis *}
default_sort pcpo
definition tr_case :: "'a \<rightarrow> 'a \<rightarrow> tr \<rightarrow> 'a" where
"tr_case = (\<Lambda> t e (Def b). if b then t else e)"
abbreviation
cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c" ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
where
"If b then e1 else e2 == tr_case\<cdot>e1\<cdot>e2\<cdot>b"
translations
"\<Lambda> (XCONST TT). t" == "CONST tr_case\<cdot>t\<cdot>\<bottom>"
"\<Lambda> (XCONST FF). t" == "CONST tr_case\<cdot>\<bottom>\<cdot>t"
lemma ifte_thms [simp]:
"If \<bottom> then e1 else e2 = \<bottom>"
"If FF then e1 else e2 = e2"
"If TT then e1 else e2 = e1"
by (simp_all add: tr_case_def TT_def FF_def)
subsection {* Boolean connectives *}
definition
trand :: "tr \<rightarrow> tr \<rightarrow> tr" where
andalso_def: "trand = (\<Lambda> x y. If x then y else FF)"
abbreviation
andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr" ("_ andalso _" [36,35] 35) where
"x andalso y == trand\<cdot>x\<cdot>y"
definition
tror :: "tr \<rightarrow> tr \<rightarrow> tr" where
orelse_def: "tror = (\<Lambda> x y. If x then TT else y)"
abbreviation
orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr" ("_ orelse _" [31,30] 30) where
"x orelse y == tror\<cdot>x\<cdot>y"
definition
neg :: "tr \<rightarrow> tr" where
"neg = flift2 Not"
definition
If2 :: "[tr, 'c, 'c] \<Rightarrow> 'c" where
"If2 Q x y = (If Q then x else y)"
text {* tactic for tr-thms with case split *}
lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def
text {* lemmas about andalso, orelse, neg and if *}
lemma andalso_thms [simp]:
"(TT andalso y) = y"
"(FF andalso y) = FF"
"(\<bottom> andalso y) = \<bottom>"
"(y andalso TT) = y"
"(y andalso y) = y"
apply (unfold andalso_def, simp_all)
apply (cases y rule: trE, simp_all)
apply (cases y rule: trE, simp_all)
done
lemma orelse_thms [simp]:
"(TT orelse y) = TT"
"(FF orelse y) = y"
"(\<bottom> orelse y) = \<bottom>"
"(y orelse FF) = y"
"(y orelse y) = y"
apply (unfold orelse_def, simp_all)
apply (cases y rule: trE, simp_all)
apply (cases y rule: trE, simp_all)
done
lemma neg_thms [simp]:
"neg\<cdot>TT = FF"
"neg\<cdot>FF = TT"
"neg\<cdot>\<bottom> = \<bottom>"
by (simp_all add: neg_def TT_def FF_def)
text {* split-tac for If via If2 because the constant has to be a constant *}
lemma split_If2:
"P (If2 Q x y) = ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))"
apply (unfold If2_def)
apply (rule_tac p = "Q" in trE)
apply (simp_all)
done
ML {*
val split_If_tac =
simp_tac (HOL_basic_ss addsimps [@{thm If2_def} RS sym])
THEN' (split_tac [@{thm split_If2}])
*}
subsection "Rewriting of HOLCF operations to HOL functions"
lemma andalso_or:
"t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) = FF) = (t = FF \<or> s = FF)"
apply (rule_tac p = "t" in trE)
apply simp_all
done
lemma andalso_and:
"t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) = (t \<noteq> FF \<and> s \<noteq> FF)"
apply (rule_tac p = "t" in trE)
apply simp_all
done
lemma Def_bool1 [simp]: "(Def x \<noteq> FF) = x"
by (simp add: FF_def)
lemma Def_bool2 [simp]: "(Def x = FF) = (\<not> x)"
by (simp add: FF_def)
lemma Def_bool3 [simp]: "(Def x = TT) = x"
by (simp add: TT_def)
lemma Def_bool4 [simp]: "(Def x \<noteq> TT) = (\<not> x)"
by (simp add: TT_def)
lemma If_and_if:
"(If Def P then A else B) = (if P then A else B)"
apply (rule_tac p = "Def P" in trE)
apply (auto simp add: TT_def[symmetric] FF_def[symmetric])
done
subsection {* Compactness *}
lemma compact_TT: "compact TT"
by (rule compact_chfin)
lemma compact_FF: "compact FF"
by (rule compact_chfin)
end