Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
theory Predicate_Compile_Quickcheck_Examples
imports "~~/src/HOL/Library/Predicate_Compile_Quickcheck"
begin
section {* Sets *}
lemma "x \<in> {(1::nat)} ==> False"
quickcheck[generator=predicate_compile_wo_ff, iterations=10]
oops
lemma "x \<in> {Suc 0, Suc (Suc 0)} ==> x \<noteq> Suc 0"
quickcheck[generator=predicate_compile_wo_ff]
oops
lemma "x \<in> {Suc 0, Suc (Suc 0)} ==> x = Suc 0"
quickcheck[generator=predicate_compile_wo_ff]
oops
lemma "x \<in> {Suc 0, Suc (Suc 0)} ==> x <= Suc 0"
quickcheck[generator=predicate_compile_wo_ff]
oops
section {* Numerals *}
lemma
"x \<in> {1, 2, (3::nat)} ==> x = 1 \<or> x = 2"
quickcheck[generator=predicate_compile_wo_ff]
oops
lemma "x \<in> {1, 2, (3::nat)} ==> x < 3"
quickcheck[generator=predicate_compile_wo_ff]
oops
lemma
"x \<in> {1, 2} \<union> {3, 4} ==> x = (1::nat) \<or> x = (2::nat)"
quickcheck[generator=predicate_compile_wo_ff]
oops
section {* Equivalences *}
inductive is_ten :: "nat => bool"
where
"is_ten 10"
inductive is_eleven :: "nat => bool"
where
"is_eleven 11"
lemma
"is_ten x = is_eleven x"
quickcheck[tester = predicate_compile_wo_ff, iterations = 1, size = 1, expect = counterexample]
oops
section {* Context Free Grammar *}
datatype alphabet = a | b
inductive_set S\<^sub>1 and A\<^sub>1 and B\<^sub>1 where
"[] \<in> S\<^sub>1"
| "w \<in> A\<^sub>1 \<Longrightarrow> b # w \<in> S\<^sub>1"
| "w \<in> B\<^sub>1 \<Longrightarrow> a # w \<in> S\<^sub>1"
| "w \<in> S\<^sub>1 \<Longrightarrow> a # w \<in> A\<^sub>1"
| "w \<in> S\<^sub>1 \<Longrightarrow> b # w \<in> S\<^sub>1"
| "\<lbrakk>v \<in> B\<^sub>1; v \<in> B\<^sub>1\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>1"
lemma
"w \<in> S\<^sub>1 \<Longrightarrow> w = []"
quickcheck[tester = predicate_compile_ff_nofs, iterations=1]
oops
theorem S\<^sub>1_sound:
"w \<in> S\<^sub>1 \<Longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
quickcheck[generator=predicate_compile_ff_nofs, size=15]
oops
inductive_set S\<^sub>2 and A\<^sub>2 and B\<^sub>2 where
"[] \<in> S\<^sub>2"
| "w \<in> A\<^sub>2 \<Longrightarrow> b # w \<in> S\<^sub>2"
| "w \<in> B\<^sub>2 \<Longrightarrow> a # w \<in> S\<^sub>2"
| "w \<in> S\<^sub>2 \<Longrightarrow> a # w \<in> A\<^sub>2"
| "w \<in> S\<^sub>2 \<Longrightarrow> b # w \<in> B\<^sub>2"
| "\<lbrakk>v \<in> B\<^sub>2; v \<in> B\<^sub>2\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>2"
(*
code_pred [random_dseq inductify] S\<^sub>2 .
thm S\<^sub>2.random_dseq_equation
thm A\<^sub>2.random_dseq_equation
thm B\<^sub>2.random_dseq_equation
values [random_dseq 1, 2, 8] 10 "{x. S\<^sub>2 x}"
lemma "w \<in> S\<^sub>2 ==> w \<noteq> [] ==> w \<noteq> [b, a] ==> w \<in> {}"
quickcheck[generator=predicate_compile, size=8]
oops
lemma "[x <- w. x = a] = []"
quickcheck[generator=predicate_compile]
oops
declare list.size(3,4)[code_pred_def]
(*
lemma "length ([x \<leftarrow> w. x = a]) = (0::nat)"
quickcheck[generator=predicate_compile]
oops
*)
lemma
"w \<in> S\<^sub>2 ==> length [x \<leftarrow> w. x = a] <= Suc (Suc 0)"
quickcheck[generator=predicate_compile, size = 10, iterations = 1]
oops
*)
theorem S\<^sub>2_sound:
"w \<in> S\<^sub>2 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
quickcheck[generator=predicate_compile_ff_nofs, size=5, iterations=10]
oops
inductive_set S\<^sub>3 and A\<^sub>3 and B\<^sub>3 where
"[] \<in> S\<^sub>3"
| "w \<in> A\<^sub>3 \<Longrightarrow> b # w \<in> S\<^sub>3"
| "w \<in> B\<^sub>3 \<Longrightarrow> a # w \<in> S\<^sub>3"
| "w \<in> S\<^sub>3 \<Longrightarrow> a # w \<in> A\<^sub>3"
| "w \<in> S\<^sub>3 \<Longrightarrow> b # w \<in> B\<^sub>3"
| "\<lbrakk>v \<in> B\<^sub>3; w \<in> B\<^sub>3\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>3"
code_pred [inductify, skip_proof] S\<^sub>3 .
thm S\<^sub>3.equation
(*
values 10 "{x. S\<^sub>3 x}"
*)
lemma S\<^sub>3_sound:
"w \<in> S\<^sub>3 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
quickcheck[generator=predicate_compile_ff_fs, size=10, iterations=10]
oops
lemma "\<not> (length w > 2) \<or> \<not> (length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b])"
quickcheck[size=10, tester = predicate_compile_ff_fs]
oops
theorem S\<^sub>3_complete:
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. b = x] \<longrightarrow> w \<in> S\<^sub>3"
(*quickcheck[generator=SML]*)
quickcheck[generator=predicate_compile_ff_fs, size=10, iterations=100]
oops
inductive_set S\<^sub>4 and A\<^sub>4 and B\<^sub>4 where
"[] \<in> S\<^sub>4"
| "w \<in> A\<^sub>4 \<Longrightarrow> b # w \<in> S\<^sub>4"
| "w \<in> B\<^sub>4 \<Longrightarrow> a # w \<in> S\<^sub>4"
| "w \<in> S\<^sub>4 \<Longrightarrow> a # w \<in> A\<^sub>4"
| "\<lbrakk>v \<in> A\<^sub>4; w \<in> A\<^sub>4\<rbrakk> \<Longrightarrow> b # v @ w \<in> A\<^sub>4"
| "w \<in> S\<^sub>4 \<Longrightarrow> b # w \<in> B\<^sub>4"
| "\<lbrakk>v \<in> B\<^sub>4; w \<in> B\<^sub>4\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>4"
theorem S\<^sub>4_sound:
"w \<in> S\<^sub>4 \<longrightarrow> length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b]"
quickcheck[tester = predicate_compile_ff_nofs, size=5, iterations=1]
oops
theorem S\<^sub>4_complete:
"length [x \<leftarrow> w. x = a] = length [x \<leftarrow> w. x = b] \<longrightarrow> w \<in> S\<^sub>4"
quickcheck[tester = predicate_compile_ff_nofs, size=5, iterations=1]
oops
hide_const a b
subsection {* Lexicographic order *}
(* TODO *)
(*
lemma
"(u, v) : lexord r ==> (x @ u, y @ v) : lexord r"
oops
*)
subsection {* IMP *}
type_synonym var = nat
type_synonym state = "int list"
datatype com =
Skip |
Ass var "int" |
Seq com com |
IF "state list" com com |
While "state list" com
inductive exec :: "com => state => state => bool" where
"exec Skip s s" |
"exec (Ass x e) s (s[x := e])" |
"exec c1 s1 s2 ==> exec c2 s2 s3 ==> exec (Seq c1 c2) s1 s3" |
"s \<in> set b ==> exec c1 s t ==> exec (IF b c1 c2) s t" |
"s \<notin> set b ==> exec c2 s t ==> exec (IF b c1 c2) s t" |
"s \<notin> set b ==> exec (While b c) s s" |
"s1 \<in> set b ==> exec c s1 s2 ==> exec (While b c) s2 s3 ==> exec (While b c) s1 s3"
code_pred [random_dseq] exec .
values [random_dseq 1, 2, 3] 10 "{(c, s, s'). exec c s s'}"
lemma
"exec c s s' ==> exec (Seq c c) s s'"
quickcheck[tester = predicate_compile_wo_ff, size=2, iterations=20, expect = counterexample]
oops
subsection {* Lambda *}
datatype type =
Atom nat
| Fun type type (infixr "\<Rightarrow>" 200)
datatype dB =
Var nat
| App dB dB (infixl "\<degree>" 200)
| Abs type dB
primrec
nth_el :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option" ("_\<langle>_\<rangle>" [90, 0] 91)
where
"[]\<langle>i\<rangle> = None"
| "(x # xs)\<langle>i\<rangle> = (case i of 0 \<Rightarrow> Some x | Suc j \<Rightarrow> xs \<langle>j\<rangle>)"
inductive nth_el' :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> bool"
where
"nth_el' (x # xs) 0 x"
| "nth_el' xs i y \<Longrightarrow> nth_el' (x # xs) (Suc i) y"
inductive typing :: "type list \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool" ("_ \<turnstile> _ : _" [50, 50, 50] 50)
where
Var [intro!]: "nth_el' env x T \<Longrightarrow> env \<turnstile> Var x : T"
| Abs [intro!]: "T # env \<turnstile> t : U \<Longrightarrow> env \<turnstile> Abs T t : (T \<Rightarrow> U)"
| App [intro!]: "env \<turnstile> s : U \<Rightarrow> T \<Longrightarrow> env \<turnstile> t : T \<Longrightarrow> env \<turnstile> (s \<degree> t) : U"
primrec
lift :: "[dB, nat] => dB"
where
"lift (Var i) k = (if i < k then Var i else Var (i + 1))"
| "lift (s \<degree> t) k = lift s k \<degree> lift t k"
| "lift (Abs T s) k = Abs T (lift s (k + 1))"
primrec
subst :: "[dB, dB, nat] => dB" ("_[_'/_]" [300, 0, 0] 300)
where
subst_Var: "(Var i)[s/k] =
(if k < i then Var (i - 1) else if i = k then s else Var i)"
| subst_App: "(t \<degree> u)[s/k] = t[s/k] \<degree> u[s/k]"
| subst_Abs: "(Abs T t)[s/k] = Abs T (t[lift s 0 / k+1])"
inductive beta :: "[dB, dB] => bool" (infixl "\<rightarrow>\<^sub>\<beta>" 50)
where
beta [simp, intro!]: "Abs T s \<degree> t \<rightarrow>\<^sub>\<beta> s[t/0]"
| appL [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> s \<degree> u \<rightarrow>\<^sub>\<beta> t \<degree> u"
| appR [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> u \<degree> s \<rightarrow>\<^sub>\<beta> u \<degree> t"
| abs [simp, intro!]: "s \<rightarrow>\<^sub>\<beta> t ==> Abs T s \<rightarrow>\<^sub>\<beta> Abs T t"
lemma
"\<Gamma> \<turnstile> t : U \<Longrightarrow> t \<rightarrow>\<^sub>\<beta> t' \<Longrightarrow> \<Gamma> \<turnstile> t' : U"
quickcheck[tester = predicate_compile_ff_fs, size = 7, iterations = 10]
oops
subsection {* JAD *}
definition matrix :: "('a :: semiring_0) list list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where
"matrix M rs cs \<longleftrightarrow> (\<forall> row \<in> set M. length row = cs) \<and> length M = rs"
(*
code_pred [random_dseq inductify] matrix .
thm matrix.random_dseq_equation
thm matrix_aux.random_dseq_equation
values [random_dseq 3, 2] 10 "{(M, rs, cs). matrix (M:: int list list) rs cs}"
*)
lemma [code_pred_intro]:
"matrix [] 0 m"
"matrix xss n m ==> length xs = m ==> matrix (xs # xss) (Suc n) m"
proof -
show "matrix [] 0 m" unfolding matrix_def by auto
next
show "matrix xss n m ==> length xs = m ==> matrix (xs # xss) (Suc n) m"
unfolding matrix_def by auto
qed
code_pred [random_dseq inductify] matrix
apply (cases x)
unfolding matrix_def apply fastforce
apply fastforce done
values [random_dseq 2, 2, 15] 6 "{(M::int list list, n, m). matrix M n m}"
definition "scalar_product v w = (\<Sum> (x, y)\<leftarrow>zip v w. x * y)"
definition mv :: "('a \<Colon> semiring_0) list list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where [simp]: "mv M v = map (scalar_product v) M"
text {*
This defines the matrix vector multiplication. To work properly @{term
"matrix M m n \<and> length v = n"} must hold.
*}
subsection "Compressed matrix"
definition "sparsify xs = [i \<leftarrow> zip [0..<length xs] xs. snd i \<noteq> 0]"
(*
lemma sparsify_length: "(i, x) \<in> set (sparsify xs) \<Longrightarrow> i < length xs"
by (auto simp: sparsify_def set_zip)
lemma listsum_sparsify[simp]:
fixes v :: "('a \<Colon> semiring_0) list"
assumes "length w = length v"
shows "(\<Sum>x\<leftarrow>sparsify w. (\<lambda>(i, x). v ! i) x * snd x) = scalar_product v w"
(is "(\<Sum>x\<leftarrow>_. ?f x) = _")
unfolding sparsify_def scalar_product_def
using assms listsum_map_filter[where f="?f" and P="\<lambda> i. snd i \<noteq> (0::'a)"]
by (simp add: listsum_setsum)
*)
definition [simp]: "unzip w = (map fst w, map snd w)"
primrec insert :: "('a \<Rightarrow> 'b \<Colon> linorder) => 'a \<Rightarrow> 'a list => 'a list" where
"insert f x [] = [x]" |
"insert f x (y # ys) = (if f y < f x then y # insert f x ys else x # y # ys)"
primrec sort :: "('a \<Rightarrow> 'b \<Colon> linorder) \<Rightarrow> 'a list => 'a list" where
"sort f [] = []" |
"sort f (x # xs) = insert f x (sort f xs)"
definition
"length_permutate M = (unzip o sort (length o snd)) (zip [0 ..< length M] M)"
(*
definition
"transpose M = [map (\<lambda> xs. xs ! i) (takeWhile (\<lambda> xs. i < length xs) M). i \<leftarrow> [0 ..< length (M ! 0)]]"
*)
definition
"inflate upds = foldr (\<lambda> (i, x) upds. upds[i := x]) upds (replicate (length upds) 0)"
definition
"jad = apsnd transpose o length_permutate o map sparsify"
definition
"jad_mv v = inflate o split zip o apsnd (map listsum o transpose o map (map (\<lambda> (i, x). v ! i * x)))"
lemma "matrix (M::int list list) rs cs \<Longrightarrow> False"
quickcheck[tester = predicate_compile_ff_nofs, size = 6]
oops
lemma
"\<lbrakk> matrix M rs cs ; length v = cs \<rbrakk> \<Longrightarrow> jad_mv v (jad M) = mv M v"
quickcheck[tester = predicate_compile_wo_ff]
oops
end