(* Title: HOL/Import/HOL_Light_Maps.thy
Author: Cezary Kaliszyk, University of Innsbruck
Author: Alexander Krauss, QAware GmbH
Based on earlier code by Steven Obua and Sebastian Skalberg
*)
section {* Type and constant mappings of HOL Light importer *}
theory HOL_Light_Maps
imports Import_Setup
begin
lemma [import_const T]:
"True = ((\<lambda>p :: bool. p) = (\<lambda>p. p))"
by simp
lemma [import_const "/\\"]:
"(op \<and>) = (\<lambda>p q. (\<lambda>f. f p q \<Colon> bool) = (\<lambda>f. f True True))"
by metis
lemma [import_const "==>"]:
"(op \<longrightarrow>) = (\<lambda>(p\<Colon>bool) q\<Colon>bool. (p \<and> q) = p)"
by auto
lemma [import_const "!"]:
"All = (\<lambda>P\<Colon>'A \<Rightarrow> bool. P = (\<lambda>x\<Colon>'A. True))"
by auto
lemma [import_const "?"]:
"Ex = (\<lambda>P\<Colon>'A \<Rightarrow> bool. All (\<lambda>q\<Colon>bool. (All (\<lambda>x\<Colon>'A\<Colon>type. (P x) \<longrightarrow> q)) \<longrightarrow> q))"
by auto
lemma [import_const "\\/"]:
"(op \<or>) = (\<lambda>p q. \<forall>r. (p \<longrightarrow> r) \<longrightarrow> (q \<longrightarrow> r) \<longrightarrow> r)"
by auto
lemma [import_const F]:
"False = (\<forall>p. p)"
by auto
lemma [import_const "~"]:
"Not = (\<lambda>p. p \<longrightarrow> False)"
by simp
lemma [import_const "?!"]:
"Ex1 = (\<lambda>P\<Colon>'A \<Rightarrow> bool. Ex P \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> x = y))"
by auto
lemma [import_const "_FALSITY_"]: "False = False"
by simp
lemma hl_ax1: "\<forall>t\<Colon>'A \<Rightarrow> 'B. (\<lambda>x. t x) = t"
by metis
lemma hl_ax2: "\<forall>P x\<Colon>'A. P x \<longrightarrow> P (Eps P)"
by (auto intro: someI)
lemma [import_const COND]:
"If = (\<lambda>t (t1 :: 'A) t2. SOME x. (t = True \<longrightarrow> x = t1) \<and> (t = False \<longrightarrow> x = t2))"
unfolding fun_eq_iff by auto
lemma [import_const o]:
"(op \<circ>) = (\<lambda>(f\<Colon>'B \<Rightarrow> 'C) g x\<Colon>'A. f (g x))"
unfolding fun_eq_iff by simp
lemma [import_const I]: "id = (\<lambda>x\<Colon>'A. x)"
by auto
lemma [import_type 1 one_ABS one_REP]:
"type_definition Rep_unit Abs_unit (Collect (\<lambda>b. b))"
by (metis (full_types) Collect_cong singleton_conv2 type_definition_unit)
lemma [import_const one]: "() = (SOME x\<Colon>unit. True)"
by auto
lemma [import_const mk_pair]:
"Pair_Rep = (\<lambda>(x\<Colon>'A) (y\<Colon>'B) (a\<Colon>'A) b\<Colon>'B. a = x \<and> b = y)"
by (simp add: Pair_Rep_def fun_eq_iff)
lemma [import_type prod ABS_prod REP_prod]:
"type_definition Rep_prod Abs_prod (Collect (\<lambda>x\<Colon>'A \<Rightarrow> 'B \<Rightarrow> bool. \<exists>a b. x = Pair_Rep a b))"
using type_definition_prod[unfolded Product_Type.prod_def] by simp
lemma [import_const ","]: "Pair = (\<lambda>(x\<Colon>'A) y\<Colon>'B. Abs_prod (Pair_Rep x y))"
by (metis Pair_def)
lemma [import_const FST]:
"fst = (\<lambda>p\<Colon>'A \<times> 'B. SOME x\<Colon>'A. \<exists>y\<Colon>'B. p = (x, y))"
by auto
lemma [import_const SND]:
"snd = (\<lambda>p\<Colon>'A \<times> 'B. SOME y\<Colon>'B. \<exists>x\<Colon>'A. p = (x, y))"
by auto
lemma CURRY_DEF[import_const CURRY]:
"curry = (\<lambda>(f\<Colon>'A \<times> 'B \<Rightarrow> 'C) x y. f (x, y))"
using curry_def .
lemma [import_const ONE_ONE : inj]:
"inj = (\<lambda>(f\<Colon>'A \<Rightarrow> 'B). \<forall>x1 x2. f x1 = f x2 \<longrightarrow> x1 = x2)"
by (auto simp add: fun_eq_iff inj_on_def)
lemma [import_const ONTO : surj]:
"surj = (\<lambda>(f\<Colon>'A \<Rightarrow> 'B). \<forall>y. \<exists>x. y = f x)"
by (auto simp add: fun_eq_iff)
lemma hl_ax3: "\<exists>f\<Colon>ind \<Rightarrow> ind. inj f \<and> \<not> surj f"
by (rule_tac x="Suc_Rep" in exI)
(metis Suc_Rep_inject' injI Suc_Rep_not_Zero_Rep surjD)
import_type_map num : nat
import_const_map "_0" : zero_class.zero
import_const_map SUC : Suc
lemma NOT_SUC: "\<forall>n. Suc n \<noteq> 0"
by simp
lemma SUC_INJ: "\<forall>m n. (Suc m = Suc n) = (m = n)"
by simp
lemma num_INDUCTION:
"\<forall>P. P 0 \<and> (\<forall>n. P n \<longrightarrow> P (Suc n)) \<longrightarrow> (\<forall>n. P n)"
by (auto intro: nat.induct)
lemma [import_const NUMERAL]: "id = (\<lambda>x :: nat. x)"
by auto
definition [simp]: "bit0 n = 2 * n"
lemma [import_const BIT0]:
"bit0 = (SOME fn. fn (id 0) = id 0 \<and> (\<forall>n. fn (Suc n) = Suc (Suc (fn n))))"
apply (auto intro!: some_equality[symmetric])
apply (auto simp add: fun_eq_iff)
apply (induct_tac x)
apply auto
done
definition [import_const BIT1, simp]:
"bit1 = (\<lambda>x. Suc (bit0 x))"
definition [simp]: "pred n = n - 1"
lemma PRE[import_const PRE : pred]:
"pred (id (0\<Colon>nat)) = id (0\<Colon>nat) \<and> (\<forall>n\<Colon>nat. pred (Suc n) = n)"
by simp
lemma ADD[import_const "+" : plus]:
"(\<forall>n :: nat. (id 0) + n = n) \<and> (\<forall>m n. (Suc m) + n = Suc (m + n))"
by simp
lemma MULT[import_const "*" : times]:
"(\<forall>n :: nat. (id 0) * n = id 0) \<and> (\<forall>m n. (Suc m) * n = (m * n) + n)"
by simp
lemma EXP[import_const EXP : power]:
"(\<forall>m. m ^ (id 0) = id (bit1 0)) \<and> (\<forall>(m :: nat) n. m ^ (Suc n) = m * (m ^ n))"
by simp
lemma LE[import_const "<=" : less_eq]:
"(\<forall>m :: nat. m \<le> (id 0) = (m = id 0)) \<and> (\<forall>m n. m \<le> (Suc n) = (m = Suc n \<or> m \<le> n))"
by auto
lemma LT[import_const "<" : less]:
"(\<forall>m :: nat. m < (id 0) = False) \<and> (\<forall>m n. m < (Suc n) = (m = n \<or> m < n))"
by auto
lemma DEF_GE[import_const ">=" : greater_eq]:
"(op \<ge>) = (\<lambda>x y :: nat. y \<le> x)"
by simp
lemma DEF_GT[import_const ">" : greater]:
"(op >) = (\<lambda>x y :: nat. y < x)"
by simp
lemma DEF_MAX[import_const "MAX"]:
"max = (\<lambda>x y :: nat. if x \<le> y then y else x)"
by (auto simp add: max.absorb_iff2 fun_eq_iff)
lemma DEF_MIN[import_const "MIN"]:
"min = (\<lambda>x y :: nat. if x \<le> y then x else y)"
by (auto simp add: min.absorb_iff1 fun_eq_iff)
definition even
where
"even = Parity.even"
lemma EVEN[import_const "EVEN" : even]:
"even (id 0\<Colon>nat) = True \<and> (\<forall>n. even (Suc n) = (\<not> even n))"
by (simp add: even_def)
lemma SUB[import_const "-" : minus]:
"(\<forall>m\<Colon>nat. m - (id 0) = m) \<and> (\<forall>m n. m - (Suc n) = pred (m - n))"
by simp
lemma FACT[import_const "FACT" : fact]:
"fact (id 0) = id (bit1 0) \<and> (\<forall>n. fact (Suc n) = Suc n * fact n)"
by simp
import_const_map MOD : mod
import_const_map DIV : div
lemma DIVISION_0:
"\<forall>m n\<Colon>nat. if n = id 0 then m div n = id 0 \<and> m mod n = m else m = m div n * n + m mod n \<and> m mod n < n"
by simp
lemmas [import_type sum "_dest_sum" "_mk_sum"] = type_definition_sum[where 'a="'A" and 'b="'B"]
import_const_map INL : Inl
import_const_map INR : Inr
lemma sum_INDUCT:
"\<forall>P. (\<forall>a :: 'A. P (Inl a)) \<and> (\<forall>a :: 'B. P (Inr a)) \<longrightarrow> (\<forall>x. P x)"
by (auto intro: sum.induct)
lemma sum_RECURSION:
"\<forall>Inl' Inr'. \<exists>fn. (\<forall>a :: 'A. fn (Inl a) = (Inl' a :: 'Z)) \<and> (\<forall>a :: 'B. fn (Inr a) = Inr' a)"
by (intro allI, rule_tac x="case_sum Inl' Inr'" in exI) auto
lemma OUTL[import_const "OUTL" : projl]:
"Sum_Type.projl (Inl x) = x"
by simp
lemma OUTR[import_const "OUTR" : projr]:
"Sum_Type.projr (Inr y) = y"
by simp
import_type_map list : list
import_const_map NIL : Nil
import_const_map CONS : Cons
lemma list_INDUCT:
"\<forall>P\<Colon>'A list \<Rightarrow> bool. P [] \<and> (\<forall>a0 a1. P a1 \<longrightarrow> P (a0 # a1)) \<longrightarrow> (\<forall>x. P x)"
using list.induct by auto
lemma list_RECURSION:
"\<forall>nil' cons'. \<exists>fn\<Colon>'A list \<Rightarrow> 'Z. fn [] = nil' \<and> (\<forall>(a0\<Colon>'A) a1\<Colon>'A list. fn (a0 # a1) = cons' a0 a1 (fn a1))"
by (intro allI, rule_tac x="rec_list nil' cons'" in exI) auto
lemma HD[import_const HD : hd]:
"hd ((h\<Colon>'A) # t) = h"
by simp
lemma TL[import_const TL : tl]:
"tl ((h\<Colon>'A) # t) = t"
by simp
lemma APPEND[import_const APPEND : append]:
"(\<forall>l\<Colon>'A list. [] @ l = l) \<and> (\<forall>(h\<Colon>'A) t l. (h # t) @ l = h # t @ l)"
by simp
lemma REVERSE[import_const REVERSE : rev]:
"rev [] = ([] :: 'A list) \<and> rev ((x\<Colon>'A) # l) = rev l @ [x]"
by simp
lemma LENGTH[import_const LENGTH : length]:
"length ([] :: 'A list) = id 0 \<and> (\<forall>(h\<Colon>'A) t. length (h # t) = Suc (length t))"
by simp
lemma MAP[import_const MAP : map]:
"(\<forall>f\<Colon>'A \<Rightarrow> 'B. map f [] = []) \<and>
(\<forall>(f\<Colon>'A \<Rightarrow> 'B) h t. map f (h # t) = f h # map f t)"
by simp
lemma LAST[import_const LAST : last]:
"last ((h\<Colon>'A) # t) = (if t = [] then h else last t)"
by simp
lemma BUTLAST[import_const BUTLAST : butlast]:
"butlast [] = ([] :: 't18337 list) \<and>
butlast ((h :: 't18337) # t) = (if t = [] then [] else h # butlast t)"
by simp
lemma REPLICATE[import_const REPLICATE : replicate]:
"replicate (id (0\<Colon>nat)) (x\<Colon>'t18358) = [] \<and>
replicate (Suc n) x = x # replicate n x"
by simp
lemma NULL[import_const NULL : List.null]:
"List.null ([]\<Colon>'t18373 list) = True \<and> List.null ((h\<Colon>'t18373) # t) = False"
unfolding null_def by simp
lemma ALL[import_const ALL : list_all]:
"list_all (P\<Colon>'t18393 \<Rightarrow> bool) [] = True \<and>
list_all P (h # t) = (P h \<and> list_all P t)"
by simp
lemma EX[import_const EX : list_ex]:
"list_ex (P\<Colon>'t18414 \<Rightarrow> bool) [] = False \<and>
list_ex P (h # t) = (P h \<or> list_ex P t)"
by simp
lemma ITLIST[import_const ITLIST : foldr]:
"foldr (f\<Colon>'t18437 \<Rightarrow> 't18436 \<Rightarrow> 't18436) [] b = b \<and>
foldr f (h # t) b = f h (foldr f t b)"
by simp
lemma ALL2_DEF[import_const ALL2 : list_all2]:
"list_all2 (P\<Colon>'t18495 \<Rightarrow> 't18502 \<Rightarrow> bool) [] (l2\<Colon>'t18502 list) = (l2 = []) \<and>
list_all2 P ((h1\<Colon>'t18495) # (t1\<Colon>'t18495 list)) l2 =
(if l2 = [] then False else P h1 (hd l2) \<and> list_all2 P t1 (tl l2))"
by simp (induct_tac l2, simp_all)
lemma FILTER[import_const FILTER : filter]:
"filter (P\<Colon>'t18680 \<Rightarrow> bool) [] = [] \<and>
filter P ((h\<Colon>'t18680) # t) = (if P h then h # filter P t else filter P t)"
by simp
lemma ZIP[import_const ZIP : zip]:
"zip [] [] = ([] :: ('t18824 \<times> 't18825) list) \<and>
zip ((h1\<Colon>'t18849) # t1) ((h2\<Colon>'t18850) # t2) = (h1, h2) # zip t1 t2"
by simp
lemma WF[import_const WF : wfP]:
"\<forall>u. wfP u \<longleftrightarrow> (\<forall>P. (\<exists>x :: 'A. P x) \<longrightarrow> (\<exists>x. P x \<and> (\<forall>y. u y x \<longrightarrow> \<not> P y)))"
proof (intro allI iffI impI wfI_min[to_pred], elim exE wfE_min[to_pred])
fix x :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and xa :: "'a" and Q
assume a: "xa \<in> Q"
assume "\<forall>P. Ex P \<longrightarrow> (\<exists>xa. P xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> P y))"
then have "Ex (\<lambda>x. x \<in> Q) \<longrightarrow> (\<exists>xa. (\<lambda>x. x \<in> Q) xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> (\<lambda>x. x \<in> Q) y))" by auto
then show "\<exists>z\<in>Q. \<forall>y. x y z \<longrightarrow> y \<notin> Q" using a by auto
next
fix x P and xa :: 'A and z
assume "P xa" "z \<in> {a. P a}" "\<And>y. x y z \<Longrightarrow> y \<notin> {a. P a}"
then show "\<exists>xa. P xa \<and> (\<forall>y. x y xa \<longrightarrow> \<not> P y)" by auto
qed auto
end