(* Title: HOL/Import/Import_Setup.thy
Author: Cezary Kaliszyk, University of Innsbruck
Author: Alexander Krauss, QAware GmbH
*)
section {* Importer machinery and required theorems *}
theory Import_Setup
imports Main "~~/src/HOL/Fact"
keywords "import_type_map" "import_const_map" "import_file" :: thy_decl
begin
ML_file "import_data.ML"
lemma light_ex_imp_nonempty:
"P t \<Longrightarrow> \<exists>x. x \<in> Collect P"
by auto
lemma typedef_hol2hollight:
assumes a: "type_definition Rep Abs (Collect P)"
shows "Abs (Rep a) = a \<and> P r = (Rep (Abs r) = r)"
by (metis type_definition.Rep_inverse type_definition.Abs_inverse
type_definition.Rep a mem_Collect_eq)
lemma ext2:
"(\<And>x. f x = g x) \<Longrightarrow> f = g"
by auto
ML_file "import_rule.ML"
end