(* Title: HOL/TLA/Buffer/DBuffer.thy
Author: Stephan Merz, University of Munich
*)
section {* Two FIFO buffers in a row, with interleaving assumption *}
theory DBuffer
imports Buffer
begin
axiomatization
(* implementation variables *)
inp :: "nat stfun" and
mid :: "nat stfun" and
out :: "nat stfun" and
q1 :: "nat list stfun" and
q2 :: "nat list stfun" and
qc :: "nat list stfun" and
DBInit :: stpred and
DBEnq :: action and
DBDeq :: action and
DBPass :: action and
DBNext :: action and
DBuffer :: temporal
where
DB_base: "basevars (inp,mid,out,q1,q2)" and
(* the concatenation of the two buffers *)
qc_def: "PRED qc == PRED (q2 @ q1)" and
DBInit_def: "DBInit == PRED (BInit inp q1 mid & BInit mid q2 out)" and
DBEnq_def: "DBEnq == ACT Enq inp q1 mid & unchanged (q2,out)" and
DBDeq_def: "DBDeq == ACT Deq mid q2 out & unchanged (inp,q1)" and
DBPass_def: "DBPass == ACT Deq inp q1 mid
& (q2$ = $q2 @ [ mid$ ])
& (out$ = $out)" and
DBNext_def: "DBNext == ACT (DBEnq | DBDeq | DBPass)" and
DBuffer_def: "DBuffer == TEMP Init DBInit
& [][DBNext]_(inp,mid,out,q1,q2)
& WF(DBDeq)_(inp,mid,out,q1,q2)
& WF(DBPass)_(inp,mid,out,q1,q2)"
declare qc_def [simp]
lemmas db_defs =
BInit_def Enq_def Deq_def Next_def IBuffer_def Buffer_def
DBInit_def DBEnq_def DBDeq_def DBPass_def DBNext_def DBuffer_def
(*** Proper initialization ***)
lemma DBInit: "|- Init DBInit --> Init (BInit inp qc out)"
by (auto simp: Init_def DBInit_def BInit_def)
(*** Step simulation ***)
lemma DB_step_simulation: "|- [DBNext]_(inp,mid,out,q1,q2) --> [Next inp qc out]_(inp,qc,out)"
apply (rule square_simulation)
apply clarsimp
apply (tactic
{* action_simp_tac (@{context} addsimps (@{thm hd_append} :: @{thms db_defs})) [] [] 1 *})
done
(*** Simulation of fairness ***)
(* Compute enabledness predicates for DBDeq and DBPass actions *)
lemma DBDeq_visible: "|- <DBDeq>_(inp,mid,out,q1,q2) = DBDeq"
apply (unfold angle_def DBDeq_def Deq_def)
apply (safe, simp (asm_lr))+
done
lemma DBDeq_enabled:
"|- Enabled (<DBDeq>_(inp,mid,out,q1,q2)) = (q2 ~= #[])"
apply (unfold DBDeq_visible [action_rewrite])
apply (force intro!: DB_base [THEN base_enabled, temp_use]
elim!: enabledE simp: angle_def DBDeq_def Deq_def)
done
lemma DBPass_visible: "|- <DBPass>_(inp,mid,out,q1,q2) = DBPass"
by (auto simp: angle_def DBPass_def Deq_def)
lemma DBPass_enabled:
"|- Enabled (<DBPass>_(inp,mid,out,q1,q2)) = (q1 ~= #[])"
apply (unfold DBPass_visible [action_rewrite])
apply (force intro!: DB_base [THEN base_enabled, temp_use]
elim!: enabledE simp: angle_def DBPass_def Deq_def)
done
(* The plan for proving weak fairness at the higher level is to prove
(0) DBuffer => (Enabled (Deq inp qc out) ~> (Deq inp qc out))
which is in turn reduced to the two leadsto conditions
(1) DBuffer => (Enabled (Deq inp qc out) ~> q2 ~= [])
(2) DBuffer => (q2 ~= [] ~> DBDeq)
and the fact that DBDeq implies <Deq inp qc out>_(inp,qc,out)
(and therefore DBDeq ~> <Deq inp qc out>_(inp,qc,out) trivially holds).
Condition (1) is reduced to
(1a) DBuffer => (qc ~= [] /\ q2 = [] ~> q2 ~= [])
by standard leadsto rules (leadsto_classical) and rule Deq_enabledE.
Both (1a) and (2) are proved from DBuffer's WF conditions by standard
WF reasoning (Lamport's WF1 and WF_leadsto).
The condition WF(Deq inp qc out) follows from (0) by rule leadsto_WF.
One could use Lamport's WF2 instead.
*)
(* Condition (1a) *)
lemma DBFair_1a: "|- [][DBNext]_(inp,mid,out,q1,q2) & WF(DBPass)_(inp,mid,out,q1,q2)
--> (qc ~= #[] & q2 = #[] ~> q2 ~= #[])"
apply (rule WF1)
apply (force simp: db_defs)
apply (force simp: angle_def DBPass_def)
apply (force simp: DBPass_enabled [temp_use])
done
(* Condition (1) *)
lemma DBFair_1: "|- [][DBNext]_(inp,mid,out,q1,q2) & WF(DBPass)_(inp,mid,out,q1,q2)
--> (Enabled (<Deq inp qc out>_(inp,qc,out)) ~> q2 ~= #[])"
apply clarsimp
apply (rule leadsto_classical [temp_use])
apply (rule DBFair_1a [temp_use, THEN LatticeTransitivity [temp_use]])
apply assumption+
apply (rule ImplLeadsto_gen [temp_use])
apply (force intro!: necT [temp_use] dest!: STL2_gen [temp_use] Deq_enabledE [temp_use]
simp add: Init_defs)
done
(* Condition (2) *)
lemma DBFair_2: "|- [][DBNext]_(inp,mid,out,q1,q2) & WF(DBDeq)_(inp,mid,out,q1,q2)
--> (q2 ~= #[] ~> DBDeq)"
apply (rule WF_leadsto)
apply (force simp: DBDeq_enabled [temp_use])
apply (force simp: angle_def)
apply (force simp: db_defs elim!: Stable [temp_use])
done
(* High-level fairness *)
lemma DBFair: "|- [][DBNext]_(inp,mid,out,q1,q2) & WF(DBPass)_(inp,mid,out,q1,q2)
& WF(DBDeq)_(inp,mid,out,q1,q2)
--> WF(Deq inp qc out)_(inp,qc,out)"
apply (auto simp del: qc_def intro!: leadsto_WF [temp_use]
DBFair_1 [temp_use, THEN [2] LatticeTransitivity [temp_use]]
DBFair_2 [temp_use, THEN [2] LatticeTransitivity [temp_use]])
apply (auto intro!: ImplLeadsto_simple [temp_use]
simp: angle_def DBDeq_def Deq_def hd_append [try_rewrite])
done
(*** Main theorem ***)
lemma DBuffer_impl_Buffer: "|- DBuffer --> Buffer inp out"
apply (unfold DBuffer_def Buffer_def IBuffer_def)
apply (force intro!: eexI [temp_use] DBInit [temp_use]
DB_step_simulation [THEN STL4, temp_use] DBFair [temp_use])
done
end