(* Title: HOL/UNITY/Comp/AllocImpl.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
*)
section{*Implementation of a multiple-client allocator from a single-client allocator*}
theory AllocImpl imports AllocBase "../Follows" "../PPROD" begin
(** State definitions. OUTPUT variables are locals **)
(*Type variable 'b is the type of items being merged*)
record 'b merge =
In :: "nat => 'b list" (*merge's INPUT histories: streams to merge*)
Out :: "'b list" (*merge's OUTPUT history: merged items*)
iOut :: "nat list" (*merge's OUTPUT history: origins of merged items*)
record ('a,'b) merge_d =
"'b merge" +
dummy :: 'a (*dummy field for new variables*)
definition non_dummy :: "('a,'b) merge_d => 'b merge" where
"non_dummy s = (|In = In s, Out = Out s, iOut = iOut s|)"
record 'b distr =
In :: "'b list" (*items to distribute*)
iIn :: "nat list" (*destinations of items to distribute*)
Out :: "nat => 'b list" (*distributed items*)
record ('a,'b) distr_d =
"'b distr" +
dummy :: 'a (*dummy field for new variables*)
record allocState =
giv :: "nat list" (*OUTPUT history: source of tokens*)
ask :: "nat list" (*INPUT: tokens requested from allocator*)
rel :: "nat list" (*INPUT: tokens released to allocator*)
record 'a allocState_d =
allocState +
dummy :: 'a (*dummy field for new variables*)
record 'a systemState =
allocState +
mergeRel :: "nat merge"
mergeAsk :: "nat merge"
distr :: "nat distr"
dummy :: 'a (*dummy field for new variables*)
(** Merge specification (the number of inputs is Nclients) ***)
definition
(*spec (10)*)
merge_increasing :: "('a,'b) merge_d program set"
where "merge_increasing =
UNIV guarantees (Increasing merge.Out) Int (Increasing merge.iOut)"
definition
(*spec (11)*)
merge_eqOut :: "('a,'b) merge_d program set"
where "merge_eqOut =
UNIV guarantees
Always {s. length (merge.Out s) = length (merge.iOut s)}"
definition
(*spec (12)*)
merge_bounded :: "('a,'b) merge_d program set"
where "merge_bounded =
UNIV guarantees
Always {s. \<forall>elt \<in> set (merge.iOut s). elt < Nclients}"
definition
(*spec (13)*)
merge_follows :: "('a,'b) merge_d program set"
where "merge_follows =
(\<Inter>i \<in> lessThan Nclients. Increasing (sub i o merge.In))
guarantees
(\<Inter>i \<in> lessThan Nclients.
(%s. sublist (merge.Out s)
{k. k < size(merge.iOut s) & merge.iOut s! k = i})
Fols (sub i o merge.In))"
definition
(*spec: preserves part*)
merge_preserves :: "('a,'b) merge_d program set"
where "merge_preserves = preserves merge.In Int preserves merge_d.dummy"
definition
(*environmental constraints*)
merge_allowed_acts :: "('a,'b) merge_d program set"
where "merge_allowed_acts =
{F. AllowedActs F =
insert Id (UNION (preserves (funPair merge.Out merge.iOut)) Acts)}"
definition
merge_spec :: "('a,'b) merge_d program set"
where "merge_spec = merge_increasing Int merge_eqOut Int merge_bounded Int
merge_follows Int merge_allowed_acts Int merge_preserves"
(** Distributor specification (the number of outputs is Nclients) ***)
definition
(*spec (14)*)
distr_follows :: "('a,'b) distr_d program set"
where "distr_follows =
Increasing distr.In Int Increasing distr.iIn Int
Always {s. \<forall>elt \<in> set (distr.iIn s). elt < Nclients}
guarantees
(\<Inter>i \<in> lessThan Nclients.
(sub i o distr.Out) Fols
(%s. sublist (distr.In s)
{k. k < size(distr.iIn s) & distr.iIn s ! k = i}))"
definition
distr_allowed_acts :: "('a,'b) distr_d program set"
where "distr_allowed_acts =
{D. AllowedActs D = insert Id (UNION (preserves distr.Out) Acts)}"
definition
distr_spec :: "('a,'b) distr_d program set"
where "distr_spec = distr_follows Int distr_allowed_acts"
(** Single-client allocator specification (required) ***)
definition
(*spec (18)*)
alloc_increasing :: "'a allocState_d program set"
where "alloc_increasing = UNIV guarantees Increasing giv"
definition
(*spec (19)*)
alloc_safety :: "'a allocState_d program set"
where "alloc_safety =
Increasing rel
guarantees Always {s. tokens (giv s) \<le> NbT + tokens (rel s)}"
definition
(*spec (20)*)
alloc_progress :: "'a allocState_d program set"
where "alloc_progress =
Increasing ask Int Increasing rel Int
Always {s. \<forall>elt \<in> set (ask s). elt \<le> NbT}
Int
(\<Inter>h. {s. h \<le> giv s & h pfixGe (ask s)}
LeadsTo
{s. tokens h \<le> tokens (rel s)})
guarantees (\<Inter>h. {s. h \<le> ask s} LeadsTo {s. h pfixLe giv s})"
definition
(*spec: preserves part*)
alloc_preserves :: "'a allocState_d program set"
where "alloc_preserves = preserves rel Int
preserves ask Int
preserves allocState_d.dummy"
definition
(*environmental constraints*)
alloc_allowed_acts :: "'a allocState_d program set"
where "alloc_allowed_acts =
{F. AllowedActs F = insert Id (UNION (preserves giv) Acts)}"
definition
alloc_spec :: "'a allocState_d program set"
where "alloc_spec = alloc_increasing Int alloc_safety Int alloc_progress Int
alloc_allowed_acts Int alloc_preserves"
locale Merge =
fixes M :: "('a,'b::order) merge_d program"
assumes
Merge_spec: "M \<in> merge_spec"
locale Distrib =
fixes D :: "('a,'b::order) distr_d program"
assumes
Distrib_spec: "D \<in> distr_spec"
(****
# {** Network specification ***}
# {*spec (9.1)*}
# network_ask :: "'a systemState program set
# "network_ask == \<Inter>i \<in> lessThan Nclients.
# Increasing (ask o sub i o client)
# guarantees[ask]
# (ask Fols (ask o sub i o client))"
# {*spec (9.2)*}
# network_giv :: "'a systemState program set
# "network_giv == \<Inter>i \<in> lessThan Nclients.
# Increasing giv
# guarantees[giv o sub i o client]
# ((giv o sub i o client) Fols giv)"
# {*spec (9.3)*}
# network_rel :: "'a systemState program set
# "network_rel == \<Inter>i \<in> lessThan Nclients.
# Increasing (rel o sub i o client)
# guarantees[rel]
# (rel Fols (rel o sub i o client))"
# {*spec: preserves part*}
# network_preserves :: "'a systemState program set
# "network_preserves == preserves giv Int
# (\<Inter>i \<in> lessThan Nclients.
# preserves (funPair rel ask o sub i o client))"
# network_spec :: "'a systemState program set
# "network_spec == network_ask Int network_giv Int
# network_rel Int network_preserves"
# {** State mappings **}
# sysOfAlloc :: "((nat => merge) * 'a) allocState_d => 'a systemState"
# "sysOfAlloc == %s. let (cl,xtr) = allocState_d.dummy s
# in (| giv = giv s,
# ask = ask s,
# rel = rel s,
# client = cl,
# dummy = xtr|)"
# sysOfClient :: "(nat => merge) * 'a allocState_d => 'a systemState"
# "sysOfClient == %(cl,al). (| giv = giv al,
# ask = ask al,
# rel = rel al,
# client = cl,
# systemState.dummy = allocState_d.dummy al|)"
****)
declare subset_preserves_o [THEN subsetD, intro]
declare funPair_o_distrib [simp]
declare Always_INT_distrib [simp]
declare o_apply [simp del]
subsection{*Theorems for Merge*}
context Merge
begin
lemma Merge_Allowed:
"Allowed M = (preserves merge.Out) Int (preserves merge.iOut)"
apply (cut_tac Merge_spec)
apply (auto simp add: merge_spec_def merge_allowed_acts_def Allowed_def
safety_prop_Acts_iff)
done
lemma M_ok_iff [iff]:
"M ok G = (G \<in> preserves merge.Out & G \<in> preserves merge.iOut &
M \<in> Allowed G)"
by (auto simp add: Merge_Allowed ok_iff_Allowed)
lemma Merge_Always_Out_eq_iOut:
"[| G \<in> preserves merge.Out; G \<in> preserves merge.iOut; M \<in> Allowed G |]
==> M Join G \<in> Always {s. length (merge.Out s) = length (merge.iOut s)}"
apply (cut_tac Merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_eqOut_def)
done
lemma Merge_Bounded:
"[| G \<in> preserves merge.iOut; G \<in> preserves merge.Out; M \<in> Allowed G |]
==> M Join G \<in> Always {s. \<forall>elt \<in> set (merge.iOut s). elt < Nclients}"
apply (cut_tac Merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_bounded_def)
done
lemma Merge_Bag_Follows_lemma:
"[| G \<in> preserves merge.iOut; G \<in> preserves merge.Out; M \<in> Allowed G |]
==> M Join G \<in> Always
{s. (\<Sum>i \<in> lessThan Nclients. bag_of (sublist (merge.Out s)
{k. k < length (iOut s) & iOut s ! k = i})) =
(bag_of o merge.Out) s}"
apply (rule Always_Compl_Un_eq [THEN iffD1])
apply (blast intro: Always_Int_I [OF Merge_Always_Out_eq_iOut Merge_Bounded])
apply (rule UNIV_AlwaysI, clarify)
apply (subst bag_of_sublist_UN_disjoint [symmetric])
apply (simp)
apply blast
apply (simp add: set_conv_nth)
apply (subgoal_tac
"(\<Union>i \<in> lessThan Nclients. {k. k < length (iOut x) & iOut x ! k = i}) =
lessThan (length (iOut x))")
apply (simp (no_asm_simp) add: o_def)
apply blast
done
lemma Merge_Bag_Follows:
"M \<in> (\<Inter>i \<in> lessThan Nclients. Increasing (sub i o merge.In))
guarantees
(bag_of o merge.Out) Fols
(%s. \<Sum>i \<in> lessThan Nclients. (bag_of o sub i o merge.In) s)"
apply (rule Merge_Bag_Follows_lemma [THEN Always_Follows1, THEN guaranteesI], auto)
apply (rule Follows_setsum)
apply (cut_tac Merge_spec)
apply (auto simp add: merge_spec_def merge_follows_def o_def)
apply (drule guaranteesD)
prefer 3
apply (best intro: mono_bag_of [THEN mono_Follows_apply, THEN subsetD], auto)
done
end
subsection{*Theorems for Distributor*}
context Distrib
begin
lemma Distr_Increasing_Out:
"D \<in> Increasing distr.In Int Increasing distr.iIn Int
Always {s. \<forall>elt \<in> set (distr.iIn s). elt < Nclients}
guarantees
(\<Inter>i \<in> lessThan Nclients. Increasing (sub i o distr.Out))"
apply (cut_tac Distrib_spec)
apply (simp add: distr_spec_def distr_follows_def)
apply clarify
apply (blast intro: guaranteesI Follows_Increasing1 dest: guaranteesD)
done
lemma Distr_Bag_Follows_lemma:
"[| G \<in> preserves distr.Out;
D Join G \<in> Always {s. \<forall>elt \<in> set (distr.iIn s). elt < Nclients} |]
==> D Join G \<in> Always
{s. (\<Sum>i \<in> lessThan Nclients. bag_of (sublist (distr.In s)
{k. k < length (iIn s) & iIn s ! k = i})) =
bag_of (sublist (distr.In s) (lessThan (length (iIn s))))}"
apply (erule Always_Compl_Un_eq [THEN iffD1])
apply (rule UNIV_AlwaysI, clarify)
apply (subst bag_of_sublist_UN_disjoint [symmetric])
apply (simp (no_asm))
apply blast
apply (simp add: set_conv_nth)
apply (subgoal_tac
"(\<Union>i \<in> lessThan Nclients. {k. k < length (iIn x) & iIn x ! k = i}) =
lessThan (length (iIn x))")
apply (simp (no_asm_simp))
apply blast
done
lemma D_ok_iff [iff]:
"D ok G = (G \<in> preserves distr.Out & D \<in> Allowed G)"
apply (cut_tac Distrib_spec)
apply (auto simp add: distr_spec_def distr_allowed_acts_def Allowed_def
safety_prop_Acts_iff ok_iff_Allowed)
done
lemma Distr_Bag_Follows:
"D \<in> Increasing distr.In Int Increasing distr.iIn Int
Always {s. \<forall>elt \<in> set (distr.iIn s). elt < Nclients}
guarantees
(\<Inter>i \<in> lessThan Nclients.
(%s. \<Sum>i \<in> lessThan Nclients. (bag_of o sub i o distr.Out) s)
Fols
(%s. bag_of (sublist (distr.In s) (lessThan (length(distr.iIn s))))))"
apply (rule guaranteesI, clarify)
apply (rule Distr_Bag_Follows_lemma [THEN Always_Follows2], auto)
apply (rule Follows_setsum)
apply (cut_tac Distrib_spec)
apply (auto simp add: distr_spec_def distr_follows_def o_def)
apply (drule guaranteesD)
prefer 3
apply (best intro: mono_bag_of [THEN mono_Follows_apply, THEN subsetD], auto)
done
end
subsection{*Theorems for Allocator*}
lemma alloc_refinement_lemma:
"!!f::nat=>nat. (\<Inter>i \<in> lessThan n. {s. f i \<le> g i s})
\<subseteq> {s. (SUM x: lessThan n. f x) \<le> (SUM x: lessThan n. g x s)}"
apply (induct_tac "n")
apply (auto simp add: lessThan_Suc)
done
lemma alloc_refinement:
"(\<Inter>i \<in> lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))
Int
Always {s. \<forall>i. i<Nclients -->
(\<forall>elt \<in> set ((sub i o allocAsk) s). elt \<le> NbT)}
Int
(\<Inter>i \<in> lessThan Nclients.
\<Inter>h. {s. h \<le> (sub i o allocGiv)s & h pfixGe (sub i o allocAsk)s}
LeadsTo {s. tokens h \<le> (tokens o sub i o allocRel)s})
\<subseteq>
(\<Inter>i \<in> lessThan Nclients. Increasing (sub i o allocAsk) Int
Increasing (sub i o allocRel))
Int
Always {s. \<forall>i. i<Nclients -->
(\<forall>elt \<in> set ((sub i o allocAsk) s). elt \<le> NbT)}
Int
(\<Inter>hf. (\<Inter>i \<in> lessThan Nclients.
{s. hf i \<le> (sub i o allocGiv)s & hf i pfixGe (sub i o allocAsk)s})
LeadsTo {s. (\<Sum>i \<in> lessThan Nclients. tokens (hf i)) \<le>
(\<Sum>i \<in> lessThan Nclients. (tokens o sub i o allocRel)s)})"
apply (auto simp add: ball_conj_distrib)
apply (rename_tac F hf)
apply (rule LeadsTo_weaken_R [OF Finite_stable_completion alloc_refinement_lemma], blast, blast)
apply (subgoal_tac "F \<in> Increasing (tokens o (sub i o allocRel))")
apply (simp add: Increasing_def o_assoc)
apply (blast intro: mono_tokens [THEN mono_Increasing_o, THEN subsetD])
done
end