(* Title: HOL/Nitpick_Examples/Refute_Nits.thy
Author: Jasmin Blanchette, TU Muenchen
Copyright 2009-2011
Refute examples adapted to Nitpick.
*)
section {* Refute Examples Adapted to Nitpick *}
theory Refute_Nits
imports Main
begin
nitpick_params [verbose, card = 1-6, max_potential = 0,
sat_solver = MiniSat_JNI, max_threads = 1, timeout = 240]
lemma "P \<and> Q"
apply (rule conjI)
nitpick [expect = genuine] 1
nitpick [expect = genuine] 2
nitpick [expect = genuine]
nitpick [card = 5, expect = genuine]
nitpick [sat_solver = SAT4J, expect = genuine] 2
oops
subsection {* Examples and Test Cases *}
subsubsection {* Propositional logic *}
lemma "True"
nitpick [expect = none]
apply auto
done
lemma "False"
nitpick [expect = genuine]
oops
lemma "P"
nitpick [expect = genuine]
oops
lemma "\<not> P"
nitpick [expect = genuine]
oops
lemma "P \<and> Q"
nitpick [expect = genuine]
oops
lemma "P \<or> Q"
nitpick [expect = genuine]
oops
lemma "P \<longrightarrow> Q"
nitpick [expect = genuine]
oops
lemma "(P::bool) = Q"
nitpick [expect = genuine]
oops
lemma "(P \<or> Q) \<longrightarrow> (P \<and> Q)"
nitpick [expect = genuine]
oops
subsubsection {* Predicate logic *}
lemma "P x y z"
nitpick [expect = genuine]
oops
lemma "P x y \<longrightarrow> P y x"
nitpick [expect = genuine]
oops
lemma "P (f (f x)) \<longrightarrow> P x \<longrightarrow> P (f x)"
nitpick [expect = genuine]
oops
subsubsection {* Equality *}
lemma "P = True"
nitpick [expect = genuine]
oops
lemma "P = False"
nitpick [expect = genuine]
oops
lemma "x = y"
nitpick [expect = genuine]
oops
lemma "f x = g x"
nitpick [expect = genuine]
oops
lemma "(f::'a\<Rightarrow>'b) = g"
nitpick [expect = genuine]
oops
lemma "(f::('d\<Rightarrow>'d)\<Rightarrow>('c\<Rightarrow>'d)) = g"
nitpick [expect = genuine]
oops
lemma "distinct [a, b]"
nitpick [expect = genuine]
apply simp
nitpick [expect = genuine]
oops
subsubsection {* First-Order Logic *}
lemma "\<exists>x. P x"
nitpick [expect = genuine]
oops
lemma "\<forall>x. P x"
nitpick [expect = genuine]
oops
lemma "\<exists>!x. P x"
nitpick [expect = genuine]
oops
lemma "Ex P"
nitpick [expect = genuine]
oops
lemma "All P"
nitpick [expect = genuine]
oops
lemma "Ex1 P"
nitpick [expect = genuine]
oops
lemma "(\<exists>x. P x) \<longrightarrow> (\<forall>x. P x)"
nitpick [expect = genuine]
oops
lemma "(\<forall>x. \<exists>y. P x y) \<longrightarrow> (\<exists>y. \<forall>x. P x y)"
nitpick [expect = genuine]
oops
lemma "(\<exists>x. P x) \<longrightarrow> (\<exists>!x. P x)"
nitpick [expect = genuine]
oops
text {* A true statement (also testing names of free and bound variables being identical) *}
lemma "(\<forall>x y. P x y \<longrightarrow> P y x) \<longrightarrow> (\<forall>x. P x y) \<longrightarrow> P y x"
nitpick [expect = none]
apply fast
done
text {* "A type has at most 4 elements." *}
lemma "\<not> distinct [a, b, c, d, e]"
nitpick [expect = genuine]
apply simp
nitpick [expect = genuine]
oops
lemma "distinct [a, b, c, d]"
nitpick [expect = genuine]
apply simp
nitpick [expect = genuine]
oops
text {* "Every reflexive and symmetric relation is transitive." *}
lemma "\<lbrakk>\<forall>x. P x x; \<forall>x y. P x y \<longrightarrow> P y x\<rbrakk> \<Longrightarrow> P x y \<longrightarrow> P y z \<longrightarrow> P x z"
nitpick [expect = genuine]
oops
text {* The ``Drinker's theorem'' *}
lemma "\<exists>x. f x = g x \<longrightarrow> f = g"
nitpick [expect = none]
apply (auto simp add: ext)
done
text {* And an incorrect version of it *}
lemma "(\<exists>x. f x = g x) \<longrightarrow> f = g"
nitpick [expect = genuine]
oops
text {* "Every function has a fixed point." *}
lemma "\<exists>x. f x = x"
nitpick [expect = genuine]
oops
text {* "Function composition is commutative." *}
lemma "f (g x) = g (f x)"
nitpick [expect = genuine]
oops
text {* "Two functions that are equivalent wrt.\ the same predicate 'P' are equal." *}
lemma "((P::('a\<Rightarrow>'b)\<Rightarrow>bool) f = P g) \<longrightarrow> (f x = g x)"
nitpick [expect = genuine]
oops
subsubsection {* Higher-Order Logic *}
lemma "\<exists>P. P"
nitpick [expect = none]
apply auto
done
lemma "\<forall>P. P"
nitpick [expect = genuine]
oops
lemma "\<exists>!P. P"
nitpick [expect = none]
apply auto
done
lemma "\<exists>!P. P x"
nitpick [expect = genuine]
oops
lemma "P Q \<or> Q x"
nitpick [expect = genuine]
oops
lemma "x \<noteq> All"
nitpick [expect = genuine]
oops
lemma "x \<noteq> Ex"
nitpick [expect = genuine]
oops
lemma "x \<noteq> Ex1"
nitpick [expect = genuine]
oops
text {* ``The transitive closure of an arbitrary relation is non-empty.'' *}
definition "trans" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"trans P \<equiv> (ALL x y z. P x y \<longrightarrow> P y z \<longrightarrow> P x z)"
definition
"subset" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"subset P Q \<equiv> (ALL x y. P x y \<longrightarrow> Q x y)"
definition
"trans_closure" :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
"trans_closure P Q \<equiv> (subset Q P) \<and> (trans P) \<and> (ALL R. subset Q R \<longrightarrow> trans R \<longrightarrow> subset P R)"
lemma "trans_closure T P \<longrightarrow> (\<exists>x y. T x y)"
nitpick [expect = genuine]
oops
text {* ``The union of transitive closures is equal to the transitive closure of unions.'' *}
lemma "(\<forall>x y. (P x y \<or> R x y) \<longrightarrow> T x y) \<longrightarrow> trans T \<longrightarrow> (\<forall>Q. (\<forall>x y. (P x y \<or> R x y) \<longrightarrow> Q x y) \<longrightarrow> trans Q \<longrightarrow> subset T Q)
\<longrightarrow> trans_closure TP P
\<longrightarrow> trans_closure TR R
\<longrightarrow> (T x y = (TP x y \<or> TR x y))"
nitpick [expect = genuine]
oops
text {* ``Every surjective function is invertible.'' *}
lemma "(\<forall>y. \<exists>x. y = f x) \<longrightarrow> (\<exists>g. \<forall>x. g (f x) = x)"
nitpick [expect = genuine]
oops
text {* ``Every invertible function is surjective.'' *}
lemma "(\<exists>g. \<forall>x. g (f x) = x) \<longrightarrow> (\<forall>y. \<exists>x. y = f x)"
nitpick [expect = genuine]
oops
text {* ``Every point is a fixed point of some function.'' *}
lemma "\<exists>f. f x = x"
nitpick [card = 1-7, expect = none]
apply (rule_tac x = "\<lambda>x. x" in exI)
apply simp
done
text {* Axiom of Choice: first an incorrect version *}
lemma "(\<forall>x. \<exists>y. P x y) \<longrightarrow> (\<exists>!f. \<forall>x. P x (f x))"
nitpick [expect = genuine]
oops
text {* And now two correct ones *}
lemma "(\<forall>x. \<exists>y. P x y) \<longrightarrow> (\<exists>f. \<forall>x. P x (f x))"
nitpick [card = 1-4, expect = none]
apply (simp add: choice)
done
lemma "(\<forall>x. \<exists>!y. P x y) \<longrightarrow> (\<exists>!f. \<forall>x. P x (f x))"
nitpick [card = 1-3, expect = none]
apply auto
apply (simp add: ex1_implies_ex choice)
apply (fast intro: ext)
done
subsubsection {* Metalogic *}
lemma "\<And>x. P x"
nitpick [expect = genuine]
oops
lemma "f x \<equiv> g x"
nitpick [expect = genuine]
oops
lemma "P \<Longrightarrow> Q"
nitpick [expect = genuine]
oops
lemma "\<lbrakk>P; Q; R\<rbrakk> \<Longrightarrow> S"
nitpick [expect = genuine]
oops
lemma "(x \<equiv> Pure.all) \<Longrightarrow> False"
nitpick [expect = genuine]
oops
lemma "(x \<equiv> (op \<equiv>)) \<Longrightarrow> False"
nitpick [expect = genuine]
oops
lemma "(x \<equiv> (op \<Longrightarrow>)) \<Longrightarrow> False"
nitpick [expect = genuine]
oops
subsubsection {* Schematic Variables *}
schematic_goal "?P"
nitpick [expect = none]
apply auto
done
schematic_goal "x = ?y"
nitpick [expect = none]
apply auto
done
subsubsection {* Abstractions *}
lemma "(\<lambda>x. x) = (\<lambda>x. y)"
nitpick [expect = genuine]
oops
lemma "(\<lambda>f. f x) = (\<lambda>f. True)"
nitpick [expect = genuine]
oops
lemma "(\<lambda>x. x) = (\<lambda>y. y)"
nitpick [expect = none]
apply simp
done
subsubsection {* Sets *}
lemma "P (A::'a set)"
nitpick [expect = genuine]
oops
lemma "P (A::'a set set)"
nitpick [expect = genuine]
oops
lemma "{x. P x} = {y. P y}"
nitpick [expect = none]
apply simp
done
lemma "x \<in> {x. P x}"
nitpick [expect = genuine]
oops
lemma "P (op \<in>)"
nitpick [expect = genuine]
oops
lemma "P (op \<in> x)"
nitpick [expect = genuine]
oops
lemma "P Collect"
nitpick [expect = genuine]
oops
lemma "A Un B = A Int B"
nitpick [expect = genuine]
oops
lemma "(A Int B) Un C = (A Un C) Int B"
nitpick [expect = genuine]
oops
lemma "Ball A P \<longrightarrow> Bex A P"
nitpick [expect = genuine]
oops
subsubsection {* @{const undefined} *}
lemma "undefined"
nitpick [expect = genuine]
oops
lemma "P undefined"
nitpick [expect = genuine]
oops
lemma "undefined x"
nitpick [expect = genuine]
oops
lemma "undefined undefined"
nitpick [expect = genuine]
oops
subsubsection {* @{const The} *}
lemma "The P"
nitpick [expect = genuine]
oops
lemma "P The"
nitpick [expect = genuine]
oops
lemma "P (The P)"
nitpick [expect = genuine]
oops
lemma "(THE x. x=y) = z"
nitpick [expect = genuine]
oops
lemma "Ex P \<longrightarrow> P (The P)"
nitpick [expect = genuine]
oops
subsubsection {* @{const Eps} *}
lemma "Eps P"
nitpick [expect = genuine]
oops
lemma "P Eps"
nitpick [expect = genuine]
oops
lemma "P (Eps P)"
nitpick [expect = genuine]
oops
lemma "(SOME x. x=y) = z"
nitpick [expect = genuine]
oops
lemma "Ex P \<longrightarrow> P (Eps P)"
nitpick [expect = none]
apply (auto simp add: someI)
done
subsubsection {* Operations on Natural Numbers *}
lemma "(x::nat) + y = 0"
nitpick [expect = genuine]
oops
lemma "(x::nat) = x + x"
nitpick [expect = genuine]
oops
lemma "(x::nat) - y + y = x"
nitpick [expect = genuine]
oops
lemma "(x::nat) = x * x"
nitpick [expect = genuine]
oops
lemma "(x::nat) < x + y"
nitpick [card = 1, expect = genuine]
oops
text {* \<times> *}
lemma "P (x::'a\<times>'b)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a\<times>'b. P x"
nitpick [expect = genuine]
oops
lemma "P (x, y)"
nitpick [expect = genuine]
oops
lemma "P (fst x)"
nitpick [expect = genuine]
oops
lemma "P (snd x)"
nitpick [expect = genuine]
oops
lemma "P Pair"
nitpick [expect = genuine]
oops
lemma "P (case x of Pair a b \<Rightarrow> f a b)"
nitpick [expect = genuine]
oops
subsubsection {* Subtypes (typedef), typedecl *}
text {* A completely unspecified non-empty subset of @{typ "'a"}: *}
definition "myTdef = insert (undefined::'a) (undefined::'a set)"
typedef 'a myTdef = "myTdef :: 'a set"
unfolding myTdef_def by auto
lemma "(x::'a myTdef) = y"
nitpick [expect = genuine]
oops
typedecl myTdecl
definition "T_bij = {(f::'a\<Rightarrow>'a). \<forall>y. \<exists>!x. f x = y}"
typedef 'a T_bij = "T_bij :: ('a \<Rightarrow> 'a) set"
unfolding T_bij_def by auto
lemma "P (f::(myTdecl myTdef) T_bij)"
nitpick [expect = genuine]
oops
subsubsection {* Inductive Datatypes *}
text {* unit *}
lemma "P (x::unit)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::unit. P x"
nitpick [expect = genuine]
oops
lemma "P ()"
nitpick [expect = genuine]
oops
lemma "P (case x of () \<Rightarrow> u)"
nitpick [expect = genuine]
oops
text {* option *}
lemma "P (x::'a option)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a option. P x"
nitpick [expect = genuine]
oops
lemma "P None"
nitpick [expect = genuine]
oops
lemma "P (Some x)"
nitpick [expect = genuine]
oops
lemma "P (case x of None \<Rightarrow> n | Some u \<Rightarrow> s u)"
nitpick [expect = genuine]
oops
text {* + *}
lemma "P (x::'a+'b)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a+'b. P x"
nitpick [expect = genuine]
oops
lemma "P (Inl x)"
nitpick [expect = genuine]
oops
lemma "P (Inr x)"
nitpick [expect = genuine]
oops
lemma "P Inl"
nitpick [expect = genuine]
oops
lemma "P (case x of Inl a \<Rightarrow> l a | Inr b \<Rightarrow> r b)"
nitpick [expect = genuine]
oops
text {* Non-recursive datatypes *}
datatype T1 = A | B
lemma "P (x::T1)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::T1. P x"
nitpick [expect = genuine]
oops
lemma "P A"
nitpick [expect = genuine]
oops
lemma "P B"
nitpick [expect = genuine]
oops
lemma "rec_T1 a b A = a"
nitpick [expect = none]
apply simp
done
lemma "rec_T1 a b B = b"
nitpick [expect = none]
apply simp
done
lemma "P (rec_T1 a b x)"
nitpick [expect = genuine]
oops
lemma "P (case x of A \<Rightarrow> a | B \<Rightarrow> b)"
nitpick [expect = genuine]
oops
datatype 'a T2 = C T1 | D 'a
lemma "P (x::'a T2)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a T2. P x"
nitpick [expect = genuine]
oops
lemma "P D"
nitpick [expect = genuine]
oops
lemma "rec_T2 c d (C x) = c x"
nitpick [expect = none]
apply simp
done
lemma "rec_T2 c d (D x) = d x"
nitpick [expect = none]
apply simp
done
lemma "P (rec_T2 c d x)"
nitpick [expect = genuine]
oops
lemma "P (case x of C u \<Rightarrow> c u | D v \<Rightarrow> d v)"
nitpick [expect = genuine]
oops
datatype ('a, 'b) T3 = E "'a \<Rightarrow> 'b"
lemma "P (x::('a, 'b) T3)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::('a, 'b) T3. P x"
nitpick [expect = genuine]
oops
lemma "P E"
nitpick [expect = genuine]
oops
lemma "rec_T3 e (E x) = e x"
nitpick [card = 1-4, expect = none]
apply simp
done
lemma "P (rec_T3 e x)"
nitpick [expect = genuine]
oops
lemma "P (case x of E f \<Rightarrow> e f)"
nitpick [expect = genuine]
oops
text {* Recursive datatypes *}
text {* nat *}
lemma "P (x::nat)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::nat. P x"
nitpick [expect = genuine]
oops
lemma "P (Suc 0)"
nitpick [expect = genuine]
oops
lemma "P Suc"
nitpick [card = 1-7, expect = none]
oops
lemma "rec_nat zero suc 0 = zero"
nitpick [expect = none]
apply simp
done
lemma "rec_nat zero suc (Suc x) = suc x (rec_nat zero suc x)"
nitpick [expect = none]
apply simp
done
lemma "P (rec_nat zero suc x)"
nitpick [expect = genuine]
oops
lemma "P (case x of 0 \<Rightarrow> zero | Suc n \<Rightarrow> suc n)"
nitpick [expect = genuine]
oops
text {* 'a list *}
lemma "P (xs::'a list)"
nitpick [expect = genuine]
oops
lemma "\<forall>xs::'a list. P xs"
nitpick [expect = genuine]
oops
lemma "P [x, y]"
nitpick [expect = genuine]
oops
lemma "rec_list nil cons [] = nil"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_list nil cons (x#xs) = cons x xs (rec_list nil cons xs)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "P (rec_list nil cons xs)"
nitpick [expect = genuine]
oops
lemma "P (case x of Nil \<Rightarrow> nil | Cons a b \<Rightarrow> cons a b)"
nitpick [expect = genuine]
oops
lemma "(xs::'a list) = ys"
nitpick [expect = genuine]
oops
lemma "a # xs = b # xs"
nitpick [expect = genuine]
oops
datatype BitList = BitListNil | Bit0 BitList | Bit1 BitList
lemma "P (x::BitList)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::BitList. P x"
nitpick [expect = genuine]
oops
lemma "P (Bit0 (Bit1 BitListNil))"
nitpick [expect = genuine]
oops
lemma "rec_BitList nil bit0 bit1 BitListNil = nil"
nitpick [expect = none]
apply simp
done
lemma "rec_BitList nil bit0 bit1 (Bit0 xs) = bit0 xs (rec_BitList nil bit0 bit1 xs)"
nitpick [expect = none]
apply simp
done
lemma "rec_BitList nil bit0 bit1 (Bit1 xs) = bit1 xs (rec_BitList nil bit0 bit1 xs)"
nitpick [expect = none]
apply simp
done
lemma "P (rec_BitList nil bit0 bit1 x)"
nitpick [expect = genuine]
oops
datatype 'a BinTree = Leaf 'a | Node "'a BinTree" "'a BinTree"
lemma "P (x::'a BinTree)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a BinTree. P x"
nitpick [expect = genuine]
oops
lemma "P (Node (Leaf x) (Leaf y))"
nitpick [expect = genuine]
oops
lemma "rec_BinTree l n (Leaf x) = l x"
nitpick [expect = none]
apply simp
done
lemma "rec_BinTree l n (Node x y) = n x y (rec_BinTree l n x) (rec_BinTree l n y)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "P (rec_BinTree l n x)"
nitpick [expect = genuine]
oops
lemma "P (case x of Leaf a \<Rightarrow> l a | Node a b \<Rightarrow> n a b)"
nitpick [expect = genuine]
oops
text {* Mutually recursive datatypes *}
datatype 'a aexp = Number 'a | ITE "'a bexp" "'a aexp" "'a aexp"
and 'a bexp = Equal "'a aexp" "'a aexp"
lemma "P (x::'a aexp)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a aexp. P x"
nitpick [expect = genuine]
oops
lemma "P (ITE (Equal (Number x) (Number y)) (Number x) (Number y))"
nitpick [expect = genuine]
oops
lemma "P (x::'a bexp)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a bexp. P x"
nitpick [expect = genuine]
oops
lemma "rec_aexp number ite equal (Number x) = number x"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "rec_aexp number ite equal (ITE x y z) = ite x y z (rec_bexp number ite equal x) (rec_aexp number ite equal y) (rec_aexp number ite equal z)"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "P (rec_aexp number ite equal x)"
nitpick [expect = genuine]
oops
lemma "P (case x of Number a \<Rightarrow> number a | ITE b a1 a2 \<Rightarrow> ite b a1 a2)"
nitpick [expect = genuine]
oops
lemma "rec_bexp number ite equal (Equal x y) = equal x y (rec_aexp number ite equal x) (rec_aexp number ite equal y)"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "P (rec_bexp number ite equal x)"
nitpick [expect = genuine]
oops
lemma "P (case x of Equal a1 a2 \<Rightarrow> equal a1 a2)"
nitpick [expect = genuine]
oops
datatype X = A | B X | C Y and Y = D X | E Y | F
lemma "P (x::X)"
nitpick [expect = genuine]
oops
lemma "P (y::Y)"
nitpick [expect = genuine]
oops
lemma "P (B (B A))"
nitpick [expect = genuine]
oops
lemma "P (B (C F))"
nitpick [expect = genuine]
oops
lemma "P (C (D A))"
nitpick [expect = genuine]
oops
lemma "P (C (E F))"
nitpick [expect = genuine]
oops
lemma "P (D (B A))"
nitpick [expect = genuine]
oops
lemma "P (D (C F))"
nitpick [expect = genuine]
oops
lemma "P (E (D A))"
nitpick [expect = genuine]
oops
lemma "P (E (E F))"
nitpick [expect = genuine]
oops
lemma "P (C (D (C F)))"
nitpick [expect = genuine]
oops
lemma "rec_X a b c d e f A = a"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_X a b c d e f (B x) = b x (rec_X a b c d e f x)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_X a b c d e f (C y) = c y (rec_Y a b c d e f y)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_Y a b c d e f (D x) = d x (rec_X a b c d e f x)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_Y a b c d e f (E y) = e y (rec_Y a b c d e f y)"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "rec_Y a b c d e f F = f"
nitpick [card = 1-5, expect = none]
apply simp
done
lemma "P (rec_X a b c d e f x)"
nitpick [expect = genuine]
oops
lemma "P (rec_Y a b c d e f y)"
nitpick [expect = genuine]
oops
text {* Other datatype examples *}
text {* Indirect recursion is implemented via mutual recursion. *}
datatype XOpt = CX "XOpt option" | DX "bool \<Rightarrow> XOpt option"
lemma "P (x::XOpt)"
nitpick [expect = genuine]
oops
lemma "P (CX None)"
nitpick [expect = genuine]
oops
lemma "P (CX (Some (CX None)))"
nitpick [expect = genuine]
oops
lemma "P (rec_X cx dx n1 s1 n2 s2 x)"
nitpick [expect = genuine]
oops
datatype 'a YOpt = CY "('a \<Rightarrow> 'a YOpt) option"
lemma "P (x::'a YOpt)"
nitpick [expect = genuine]
oops
lemma "P (CY None)"
nitpick [expect = genuine]
oops
lemma "P (CY (Some (\<lambda>a. CY None)))"
nitpick [expect = genuine]
oops
datatype Trie = TR "Trie list"
lemma "P (x::Trie)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::Trie. P x"
nitpick [expect = genuine]
oops
lemma "P (TR [TR []])"
nitpick [expect = genuine]
oops
datatype InfTree = Leaf | Node "nat \<Rightarrow> InfTree"
lemma "P (x::InfTree)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::InfTree. P x"
nitpick [expect = genuine]
oops
lemma "P (Node (\<lambda>n. Leaf))"
nitpick [expect = genuine]
oops
lemma "rec_InfTree leaf node Leaf = leaf"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "rec_InfTree leaf node (Node g) = node ((\<lambda>InfTree. (InfTree, rec_InfTree leaf node InfTree)) \<circ> g)"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "P (rec_InfTree leaf node x)"
nitpick [expect = genuine]
oops
datatype 'a lambda = Var 'a | App "'a lambda" "'a lambda" | Lam "'a \<Rightarrow> 'a lambda"
lemma "P (x::'a lambda)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'a lambda. P x"
nitpick [expect = genuine]
oops
lemma "P (Lam (\<lambda>a. Var a))"
nitpick [card = 1-5, expect = none]
nitpick [card 'a = 4, card "'a lambda" = 5, expect = genuine]
oops
lemma "rec_lambda var app lam (Var x) = var x"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "rec_lambda var app lam (App x y) = app x y (rec_lambda var app lam x) (rec_lambda var app lam y)"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "rec_lambda var app lam (Lam x) = lam ((\<lambda>lambda. (lambda, rec_lambda var app lam lambda)) \<circ> x)"
nitpick [card = 1-3, expect = none]
apply simp
done
lemma "P (rec_lambda v a l x)"
nitpick [expect = genuine]
oops
text {* Taken from "Inductive datatypes in HOL", p. 8: *}
datatype (dead 'a, 'b) T = C "'a \<Rightarrow> bool" | D "'b list"
datatype 'c U = E "('c, 'c U) T"
lemma "P (x::'c U)"
nitpick [expect = genuine]
oops
lemma "\<forall>x::'c U. P x"
nitpick [expect = genuine]
oops
lemma "P (E (C (\<lambda>a. True)))"
nitpick [expect = genuine]
oops
subsubsection {* Records *}
record ('a, 'b) point =
xpos :: 'a
ypos :: 'b
lemma "(x::('a, 'b) point) = y"
nitpick [expect = genuine]
oops
record ('a, 'b, 'c) extpoint = "('a, 'b) point" +
ext :: 'c
lemma "(x::('a, 'b, 'c) extpoint) = y"
nitpick [expect = genuine]
oops
subsubsection {* Inductively Defined Sets *}
inductive_set undefinedSet :: "'a set" where
"undefined \<in> undefinedSet"
lemma "x \<in> undefinedSet"
nitpick [expect = genuine]
oops
inductive_set evenCard :: "'a set set"
where
"{} \<in> evenCard" |
"\<lbrakk>S \<in> evenCard; x \<notin> S; y \<notin> S; x \<noteq> y\<rbrakk> \<Longrightarrow> S \<union> {x, y} \<in> evenCard"
lemma "S \<in> evenCard"
nitpick [expect = genuine]
oops
inductive_set
even :: "nat set"
and odd :: "nat set"
where
"0 \<in> even" |
"n \<in> even \<Longrightarrow> Suc n \<in> odd" |
"n \<in> odd \<Longrightarrow> Suc n \<in> even"
lemma "n \<in> odd"
nitpick [expect = genuine]
oops
consts f :: "'a \<Rightarrow> 'a"
inductive_set a_even :: "'a set" and a_odd :: "'a set" where
"undefined \<in> a_even" |
"x \<in> a_even \<Longrightarrow> f x \<in> a_odd" |
"x \<in> a_odd \<Longrightarrow> f x \<in> a_even"
lemma "x \<in> a_odd"
nitpick [expect = genuine]
oops
subsubsection {* Examples Involving Special Functions *}
lemma "card x = 0"
nitpick [expect = genuine]
oops
lemma "finite x"
nitpick [expect = none]
oops
lemma "xs @ [] = ys @ []"
nitpick [expect = genuine]
oops
lemma "xs @ ys = ys @ xs"
nitpick [expect = genuine]
oops
lemma "f (lfp f) = lfp f"
nitpick [card = 2, expect = genuine]
oops
lemma "f (gfp f) = gfp f"
nitpick [card = 2, expect = genuine]
oops
lemma "lfp f = gfp f"
nitpick [card = 2, expect = genuine]
oops
subsubsection {* Axiomatic Type Classes and Overloading *}
text {* A type class without axioms: *}
class classA
lemma "P (x::'a::classA)"
nitpick [expect = genuine]
oops
text {* An axiom with a type variable (denoting types which have at least two elements): *}
class classC =
assumes classC_ax: "\<exists>x y. x \<noteq> y"
lemma "P (x::'a::classC)"
nitpick [expect = genuine]
oops
lemma "\<exists>x y. (x::'a::classC) \<noteq> y"
nitpick [expect = none]
sorry
text {* A type class for which a constant is defined: *}
class classD =
fixes classD_const :: "'a \<Rightarrow> 'a"
assumes classD_ax: "classD_const (classD_const x) = classD_const x"
lemma "P (x::'a::classD)"
nitpick [expect = genuine]
oops
text {* A type class with multiple superclasses: *}
class classE = classC + classD
lemma "P (x::'a::classE)"
nitpick [expect = genuine]
oops
text {* OFCLASS: *}
lemma "OFCLASS('a::type, type_class)"
nitpick [expect = none]
apply intro_classes
done
lemma "OFCLASS('a::classC, type_class)"
nitpick [expect = none]
apply intro_classes
done
lemma "OFCLASS('a::type, classC_class)"
nitpick [expect = genuine]
oops
text {* Overloading: *}
consts inverse :: "'a \<Rightarrow> 'a"
overloading inverse_bool \<equiv> "inverse :: bool \<Rightarrow> bool"
begin
definition "inverse (b::bool) \<equiv> \<not> b"
end
overloading inverse_set \<equiv> "inverse :: 'a set \<Rightarrow> 'a set"
begin
definition "inverse (S::'a set) \<equiv> -S"
end
overloading inverse_pair \<equiv> "inverse :: 'a \<times> 'b \<Rightarrow> 'a \<times> 'b"
begin
definition "inverse_pair p \<equiv> (inverse (fst p), inverse (snd p))"
end
lemma "inverse b"
nitpick [expect = genuine]
oops
lemma "P (inverse (S::'a set))"
nitpick [expect = genuine]
oops
lemma "P (inverse (p::'a\<times>'b))"
nitpick [expect = genuine]
oops
end