(* Title: HOL/Univ.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Declares the type 'a node, a subtype of (nat=>nat) * ('a+nat)
Defines "Cartesian Product" and "Disjoint Sum" as set operations.
Could <*> be generalized to a general summation (Sigma)?
*)
Univ = Arith + Sum +
(** lists, trees will be sets of nodes **)
typedef (Node)
'a node = "{p. EX f x k. p = (f::nat=>nat, x::'a+nat) & f(k)=0}"
types
'a item = 'a node set
consts
apfst :: "['a=>'c, 'a*'b] => 'c*'b"
Push :: [nat, nat=>nat] => (nat=>nat)
Push_Node :: [nat, 'a node] => 'a node
ndepth :: 'a node => nat
Atom :: "('a+nat) => 'a item"
Leaf :: 'a => 'a item
Numb :: nat => 'a item
"$" :: ['a item, 'a item]=> 'a item (infixr 60)
In0,In1 :: 'a item => 'a item
ntrunc :: [nat, 'a item] => 'a item
"<*>" :: ['a item set, 'a item set]=> 'a item set (infixr 80)
"<+>" :: ['a item set, 'a item set]=> 'a item set (infixr 70)
Split :: [['a item, 'a item]=>'b, 'a item] => 'b
Case :: [['a item]=>'b, ['a item]=>'b, 'a item] => 'b
diag :: "'a set => ('a * 'a)set"
"<**>" :: "[('a item * 'a item)set, ('a item * 'a item)set]
=> ('a item * 'a item)set" (infixr 80)
"<++>" :: "[('a item * 'a item)set, ('a item * 'a item)set]
=> ('a item * 'a item)set" (infixr 70)
defs
Push_Node_def "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
(*crude "lists" of nats -- needed for the constructions*)
apfst_def "apfst == (%f (x,y). (f(x),y))"
Push_def "Push == (%b h. nat_case (Suc b) h)"
(** operations on S-expressions -- sets of nodes **)
(*S-expression constructors*)
Atom_def "Atom == (%x. {Abs_Node((%k.0, x))})"
Scons_def "M$N == (Push_Node(0) `` M) Un (Push_Node(Suc(0)) `` N)"
(*Leaf nodes, with arbitrary or nat labels*)
Leaf_def "Leaf == Atom o Inl"
Numb_def "Numb == Atom o Inr"
(*Injections of the "disjoint sum"*)
In0_def "In0(M) == Numb(0) $ M"
In1_def "In1(M) == Numb(Suc(0)) $ M"
(*the set of nodes with depth less than k*)
ndepth_def "ndepth(n) == (%(f,x). LEAST k. f(k)=0) (Rep_Node n)"
ntrunc_def "ntrunc k N == {n. n:N & ndepth(n)<k}"
(*products and sums for the "universe"*)
uprod_def "A<*>B == UN x:A. UN y:B. { (x$y) }"
usum_def "A<+>B == In0``A Un In1``B"
(*the corresponding eliminators*)
Split_def "Split c M == @u. ? x y. M = x$y & u = c x y"
Case_def "Case c d M == @u. (? x . M = In0(x) & u = c(x))
| (? y . M = In1(y) & u = d(y))"
(** diagonal sets and equality for the "universe" **)
diag_def "diag(A) == UN x:A. {(x,x)}"
dprod_def "r<**>s == UN (x,x'):r. UN (y,y'):s. {(x$y,x'$y')}"
dsum_def "r<++>s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
(UN (y,y'):s. {(In1(y),In1(y'))})"
end