src/HOL/Induct/ABexp.thy
author wenzelm
Sat, 18 Aug 2007 13:32:28 +0200
changeset 24325 5c29e8822f50
parent 16417 9bc16273c2d4
child 36862 952b2b102a0a
permissions -rw-r--r--
make HOL-ex earlier;

(*  Title:      HOL/Induct/ABexp.thy
    ID:         $Id$
    Author:     Stefan Berghofer, TU Muenchen
*)

header {* Arithmetic and boolean expressions *}

theory ABexp imports Main begin

datatype 'a aexp =
    IF "'a bexp"  "'a aexp"  "'a aexp"
  | Sum "'a aexp"  "'a aexp"
  | Diff "'a aexp"  "'a aexp"
  | Var 'a
  | Num nat
and 'a bexp =
    Less "'a aexp"  "'a aexp"
  | And "'a bexp"  "'a bexp"
  | Neg "'a bexp"


text {* \medskip Evaluation of arithmetic and boolean expressions *}

consts
  evala :: "('a => nat) => 'a aexp => nat"
  evalb :: "('a => nat) => 'a bexp => bool"

primrec
  "evala env (IF b a1 a2) = (if evalb env b then evala env a1 else evala env a2)"
  "evala env (Sum a1 a2) = evala env a1 + evala env a2"
  "evala env (Diff a1 a2) = evala env a1 - evala env a2"
  "evala env (Var v) = env v"
  "evala env (Num n) = n"

  "evalb env (Less a1 a2) = (evala env a1 < evala env a2)"
  "evalb env (And b1 b2) = (evalb env b1 \<and> evalb env b2)"
  "evalb env (Neg b) = (\<not> evalb env b)"


text {* \medskip Substitution on arithmetic and boolean expressions *}

consts
  substa :: "('a => 'b aexp) => 'a aexp => 'b aexp"
  substb :: "('a => 'b aexp) => 'a bexp => 'b bexp"

primrec
  "substa f (IF b a1 a2) = IF (substb f b) (substa f a1) (substa f a2)"
  "substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"
  "substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"
  "substa f (Var v) = f v"
  "substa f (Num n) = Num n"

  "substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"
  "substb f (And b1 b2) = And (substb f b1) (substb f b2)"
  "substb f (Neg b) = Neg (substb f b)"

lemma subst1_aexp:
  "evala env (substa (Var (v := a')) a) = evala (env (v := evala env a')) a"
and subst1_bexp:
  "evalb env (substb (Var (v := a')) b) = evalb (env (v := evala env a')) b"
    --  {* one variable *}
  by (induct a and b) simp_all

lemma subst_all_aexp:
  "evala env (substa s a) = evala (\<lambda>x. evala env (s x)) a"
and subst_all_bexp:
  "evalb env (substb s b) = evalb (\<lambda>x. evala env (s x)) b"
  by (induct a and b) auto

end