conditional warnings: explicitly observe context visibility flag, not just accidental presence of a context;
map_ss: explicitly provide a temporary context, which might be required for mksimps, mkcongs etc.;
(* Title: FOL/ex/First_Order_Logic.thy
Author: Markus Wenzel, TU Munich
*)
header {* A simple formulation of First-Order Logic *}
theory First_Order_Logic imports Pure begin
text {*
The subsequent theory development illustrates single-sorted
intuitionistic first-order logic with equality, formulated within
the Pure framework. Actually this is not an example of
Isabelle/FOL, but of Isabelle/Pure.
*}
subsection {* Syntax *}
typedecl i
typedecl o
judgment
Trueprop :: "o \<Rightarrow> prop" ("_" 5)
subsection {* Propositional logic *}
axiomatization
false :: o ("\<bottom>") and
imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25) and
conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<and>" 35) and
disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<or>" 30)
where
falseE [elim]: "\<bottom> \<Longrightarrow> A" and
impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B" and
mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B" and
conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B" and
conjD1: "A \<and> B \<Longrightarrow> A" and
conjD2: "A \<and> B \<Longrightarrow> B" and
disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C" and
disjI1 [intro]: "A \<Longrightarrow> A \<or> B" and
disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
theorem conjE [elim]:
assumes "A \<and> B"
obtains A and B
proof
from `A \<and> B` show A by (rule conjD1)
from `A \<and> B` show B by (rule conjD2)
qed
definition
true :: o ("\<top>") where
"\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
definition
not :: "o \<Rightarrow> o" ("\<not> _" [40] 40) where
"\<not> A \<equiv> A \<longrightarrow> \<bottom>"
definition
iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25) where
"A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
theorem trueI [intro]: \<top>
proof (unfold true_def)
show "\<bottom> \<longrightarrow> \<bottom>" ..
qed
theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
proof (unfold not_def)
assume "A \<Longrightarrow> \<bottom>"
then show "A \<longrightarrow> \<bottom>" ..
qed
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold not_def)
assume "A \<longrightarrow> \<bottom>" and A
then have \<bottom> .. then show B ..
qed
theorem iffI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
proof (unfold iff_def)
assume "A \<Longrightarrow> B" then have "A \<longrightarrow> B" ..
moreover assume "B \<Longrightarrow> A" then have "B \<longrightarrow> A" ..
ultimately show "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)" ..
qed
theorem iff1 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
proof (unfold iff_def)
assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
then have "A \<longrightarrow> B" ..
then show "A \<Longrightarrow> B" ..
qed
theorem iff2 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> B \<Longrightarrow> A"
proof (unfold iff_def)
assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
then have "B \<longrightarrow> A" ..
then show "B \<Longrightarrow> A" ..
qed
subsection {* Equality *}
axiomatization
equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl "=" 50)
where
refl [intro]: "x = x" and
subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
by (rule subst)
theorem sym [sym]: "x = y \<Longrightarrow> y = x"
proof -
assume "x = y"
from this and refl show "y = x" by (rule subst)
qed
subsection {* Quantifiers *}
axiomatization
All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10) and
Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
where
allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x" and
allD [dest]: "\<forall>x. P x \<Longrightarrow> P a" and
exI [intro]: "P a \<Longrightarrow> \<exists>x. P x" and
exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"
lemma "(\<exists>x. P (f x)) \<longrightarrow> (\<exists>y. P y)"
proof
assume "\<exists>x. P (f x)"
then show "\<exists>y. P y"
proof
fix x assume "P (f x)"
then show ?thesis ..
qed
qed
lemma "(\<exists>x. \<forall>y. R x y) \<longrightarrow> (\<forall>y. \<exists>x. R x y)"
proof
assume "\<exists>x. \<forall>y. R x y"
then show "\<forall>y. \<exists>x. R x y"
proof
fix x assume a: "\<forall>y. R x y"
show ?thesis
proof
fix y from a have "R x y" ..
then show "\<exists>x. R x y" ..
qed
qed
qed
end