(* Title: FOL/ex/Propositional_Int.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
*)
header {* First-Order Logic: propositional examples (intuitionistic version) *}
theory Propositional_Int
imports IFOL
begin
text {* commutative laws of @{text "&"} and @{text "|"} *}
lemma "P & Q --> Q & P"
by (tactic "IntPr.fast_tac 1")
lemma "P | Q --> Q | P"
by (tactic "IntPr.fast_tac 1")
text {* associative laws of @{text "&"} and @{text "|"} *}
lemma "(P & Q) & R --> P & (Q & R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P | Q) | R --> P | (Q | R)"
by (tactic "IntPr.fast_tac 1")
text {* distributive laws of @{text "&"} and @{text "|"} *}
lemma "(P & Q) | R --> (P | R) & (Q | R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P | R) & (Q | R) --> (P & Q) | R"
by (tactic "IntPr.fast_tac 1")
lemma "(P | Q) & R --> (P & R) | (Q & R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P & R) | (Q & R) --> (P | Q) & R"
by (tactic "IntPr.fast_tac 1")
text {* Laws involving implication *}
lemma "(P-->R) & (Q-->R) <-> (P|Q --> R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P & Q --> R) <-> (P--> (Q-->R))"
by (tactic "IntPr.fast_tac 1")
lemma "((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
by (tactic "IntPr.fast_tac 1")
lemma "~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P --> Q & R) <-> (P-->Q) & (P-->R)"
by (tactic "IntPr.fast_tac 1")
text {* Propositions-as-types *}
-- {* The combinator K *}
lemma "P --> (Q --> P)"
by (tactic "IntPr.fast_tac 1")
-- {* The combinator S *}
lemma "(P-->Q-->R) --> (P-->Q) --> (P-->R)"
by (tactic "IntPr.fast_tac 1")
-- {* Converse is classical *}
lemma "(P-->Q) | (P-->R) --> (P --> Q | R)"
by (tactic "IntPr.fast_tac 1")
lemma "(P-->Q) --> (~Q --> ~P)"
by (tactic "IntPr.fast_tac 1")
text {* Schwichtenberg's examples (via T. Nipkow) *}
lemma stab_imp: "(((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
by (tactic "IntPr.fast_tac 1")
lemma stab_to_peirce:
"(((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)
--> ((P --> Q) --> P) --> P"
by (tactic "IntPr.fast_tac 1")
lemma peirce_imp1: "(((Q --> R) --> Q) --> Q)
--> (((P --> Q) --> R) --> P --> Q) --> P --> Q"
by (tactic "IntPr.fast_tac 1")
lemma peirce_imp2: "(((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
by (tactic "IntPr.fast_tac 1")
lemma mints: "((((P --> Q) --> P) --> P) --> Q) --> Q"
by (tactic "IntPr.fast_tac 1")
lemma mints_solovev: "(P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
by (tactic "IntPr.fast_tac 1")
lemma tatsuta: "(((P7 --> P1) --> P10) --> P4 --> P5)
--> (((P8 --> P2) --> P9) --> P3 --> P10)
--> (P1 --> P8) --> P6 --> P7
--> (((P3 --> P2) --> P9) --> P4)
--> (P1 --> P3) --> (((P6 --> P1) --> P2) --> P9) --> P5"
by (tactic "IntPr.fast_tac 1")
lemma tatsuta1: "(((P8 --> P2) --> P9) --> P3 --> P10)
--> (((P3 --> P2) --> P9) --> P4)
--> (((P6 --> P1) --> P2) --> P9)
--> (((P7 --> P1) --> P10) --> P4 --> P5)
--> (P1 --> P3) --> (P1 --> P8) --> P6 --> P7 --> P5"
by (tactic "IntPr.fast_tac 1")
end