(* Title: HOL/OrderedGroup.thy
Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
*)
header {* Ordered Groups *}
theory OrderedGroup
imports Lattices
uses "~~/src/Provers/Arith/abel_cancel.ML"
begin
text {*
The theory of partially ordered groups is taken from the books:
\begin{itemize}
\item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979
\item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
\end{itemize}
Most of the used notions can also be looked up in
\begin{itemize}
\item \url{http://www.mathworld.com} by Eric Weisstein et. al.
\item \emph{Algebra I} by van der Waerden, Springer.
\end{itemize}
*}
ML{*
structure AlgebraSimps =
NamedThmsFun(val name = "algebra_simps"
val description = "algebra simplification rules");
*}
setup AlgebraSimps.setup
text{* The rewrites accumulated in @{text algebra_simps} deal with the
classical algebraic structures of groups, rings and family. They simplify
terms by multiplying everything out (in case of a ring) and bringing sums and
products into a canonical form (by ordered rewriting). As a result it decides
group and ring equalities but also helps with inequalities.
Of course it also works for fields, but it knows nothing about multiplicative
inverses or division. This is catered for by @{text field_simps}. *}
subsection {* Semigroups and Monoids *}
class semigroup_add = plus +
assumes add_assoc[algebra_simps]: "(a + b) + c = a + (b + c)"
class ab_semigroup_add = semigroup_add +
assumes add_commute[algebra_simps]: "a + b = b + a"
begin
lemma add_left_commute[algebra_simps]: "a + (b + c) = b + (a + c)"
by (rule mk_left_commute [of "plus", OF add_assoc add_commute])
theorems add_ac = add_assoc add_commute add_left_commute
end
theorems add_ac = add_assoc add_commute add_left_commute
class semigroup_mult = times +
assumes mult_assoc[algebra_simps]: "(a * b) * c = a * (b * c)"
class ab_semigroup_mult = semigroup_mult +
assumes mult_commute[algebra_simps]: "a * b = b * a"
begin
lemma mult_left_commute[algebra_simps]: "a * (b * c) = b * (a * c)"
by (rule mk_left_commute [of "times", OF mult_assoc mult_commute])
theorems mult_ac = mult_assoc mult_commute mult_left_commute
end
theorems mult_ac = mult_assoc mult_commute mult_left_commute
class ab_semigroup_idem_mult = ab_semigroup_mult +
assumes mult_idem[simp]: "x * x = x"
begin
lemma mult_left_idem[simp]: "x * (x * y) = x * y"
unfolding mult_assoc [symmetric, of x] mult_idem ..
end
class monoid_add = zero + semigroup_add +
assumes add_0_left [simp]: "0 + a = a"
and add_0_right [simp]: "a + 0 = a"
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
by (rule eq_commute)
class comm_monoid_add = zero + ab_semigroup_add +
assumes add_0: "0 + a = a"
begin
subclass monoid_add
proof qed (insert add_0, simp_all add: add_commute)
end
class monoid_mult = one + semigroup_mult +
assumes mult_1_left [simp]: "1 * a = a"
assumes mult_1_right [simp]: "a * 1 = a"
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
by (rule eq_commute)
class comm_monoid_mult = one + ab_semigroup_mult +
assumes mult_1: "1 * a = a"
begin
subclass monoid_mult
proof qed (insert mult_1, simp_all add: mult_commute)
end
class cancel_semigroup_add = semigroup_add +
assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
begin
lemma add_left_cancel [simp]:
"a + b = a + c \<longleftrightarrow> b = c"
by (blast dest: add_left_imp_eq)
lemma add_right_cancel [simp]:
"b + a = c + a \<longleftrightarrow> b = c"
by (blast dest: add_right_imp_eq)
end
class cancel_ab_semigroup_add = ab_semigroup_add +
assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
begin
subclass cancel_semigroup_add
proof
fix a b c :: 'a
assume "a + b = a + c"
then show "b = c" by (rule add_imp_eq)
next
fix a b c :: 'a
assume "b + a = c + a"
then have "a + b = a + c" by (simp only: add_commute)
then show "b = c" by (rule add_imp_eq)
qed
end
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
subsection {* Groups *}
class group_add = minus + uminus + monoid_add +
assumes left_minus [simp]: "- a + a = 0"
assumes diff_minus: "a - b = a + (- b)"
begin
lemma minus_add_cancel: "- a + (a + b) = b"
by (simp add: add_assoc[symmetric])
lemma minus_zero [simp]: "- 0 = 0"
proof -
have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right)
also have "\<dots> = 0" by (rule minus_add_cancel)
finally show ?thesis .
qed
lemma minus_minus [simp]: "- (- a) = a"
proof -
have "- (- a) = - (- a) + (- a + a)" by simp
also have "\<dots> = a" by (rule minus_add_cancel)
finally show ?thesis .
qed
lemma right_minus [simp]: "a + - a = 0"
proof -
have "a + - a = - (- a) + - a" by simp
also have "\<dots> = 0" by (rule left_minus)
finally show ?thesis .
qed
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
proof
assume "a - b = 0"
have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
also have "\<dots> = b" using `a - b = 0` by simp
finally show "a = b" .
next
assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
qed
lemma equals_zero_I:
assumes "a + b = 0" shows "- a = b"
proof -
have "- a = - a + (a + b)" using assms by simp
also have "\<dots> = b" by (simp add: add_assoc[symmetric])
finally show ?thesis .
qed
lemma diff_self [simp]: "a - a = 0"
by (simp add: diff_minus)
lemma diff_0 [simp]: "0 - a = - a"
by (simp add: diff_minus)
lemma diff_0_right [simp]: "a - 0 = a"
by (simp add: diff_minus)
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
by (simp add: diff_minus)
lemma neg_equal_iff_equal [simp]:
"- a = - b \<longleftrightarrow> a = b"
proof
assume "- a = - b"
hence "- (- a) = - (- b)" by simp
thus "a = b" by simp
next
assume "a = b"
thus "- a = - b" by simp
qed
lemma neg_equal_0_iff_equal [simp]:
"- a = 0 \<longleftrightarrow> a = 0"
by (subst neg_equal_iff_equal [symmetric], simp)
lemma neg_0_equal_iff_equal [simp]:
"0 = - a \<longleftrightarrow> 0 = a"
by (subst neg_equal_iff_equal [symmetric], simp)
text{*The next two equations can make the simplifier loop!*}
lemma equation_minus_iff:
"a = - b \<longleftrightarrow> b = - a"
proof -
have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
thus ?thesis by (simp add: eq_commute)
qed
lemma minus_equation_iff:
"- a = b \<longleftrightarrow> - b = a"
proof -
have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
thus ?thesis by (simp add: eq_commute)
qed
lemma diff_add_cancel: "a - b + b = a"
by (simp add: diff_minus add_assoc)
lemma add_diff_cancel: "a + b - b = a"
by (simp add: diff_minus add_assoc)
declare diff_minus[symmetric, algebra_simps]
lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
proof
assume "a = - b" then show "a + b = 0" by simp
next
assume "a + b = 0"
moreover have "a + (b + - b) = (a + b) + - b"
by (simp only: add_assoc)
ultimately show "a = - b" by simp
qed
end
class ab_group_add = minus + uminus + comm_monoid_add +
assumes ab_left_minus: "- a + a = 0"
assumes ab_diff_minus: "a - b = a + (- b)"
begin
subclass group_add
proof qed (simp_all add: ab_left_minus ab_diff_minus)
subclass cancel_comm_monoid_add
proof
fix a b c :: 'a
assume "a + b = a + c"
then have "- a + a + b = - a + a + c"
unfolding add_assoc by simp
then show "b = c" by simp
qed
lemma uminus_add_conv_diff[algebra_simps]:
"- a + b = b - a"
by (simp add:diff_minus add_commute)
lemma minus_add_distrib [simp]:
"- (a + b) = - a + - b"
by (rule equals_zero_I) (simp add: add_ac)
lemma minus_diff_eq [simp]:
"- (a - b) = b - a"
by (simp add: diff_minus add_commute)
lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c"
by (simp add: diff_minus add_ac)
lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b"
by (simp add: diff_minus add_ac)
lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b"
by (auto simp add: diff_minus add_assoc)
lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c"
by (auto simp add: diff_minus add_assoc)
lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)"
by (simp add: diff_minus add_ac)
lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b"
by (simp add: diff_minus add_ac)
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
by (simp add: algebra_simps)
lemma diff_eq_0_iff_eq [simp, noatp]: "a - b = 0 \<longleftrightarrow> a = b"
by (simp add: algebra_simps)
end
subsection {* (Partially) Ordered Groups *}
class pordered_ab_semigroup_add = order + ab_semigroup_add +
assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
begin
lemma add_right_mono:
"a \<le> b \<Longrightarrow> a + c \<le> b + c"
by (simp add: add_commute [of _ c] add_left_mono)
text {* non-strict, in both arguments *}
lemma add_mono:
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
apply (erule add_right_mono [THEN order_trans])
apply (simp add: add_commute add_left_mono)
done
end
class pordered_cancel_ab_semigroup_add =
pordered_ab_semigroup_add + cancel_ab_semigroup_add
begin
lemma add_strict_left_mono:
"a < b \<Longrightarrow> c + a < c + b"
by (auto simp add: less_le add_left_mono)
lemma add_strict_right_mono:
"a < b \<Longrightarrow> a + c < b + c"
by (simp add: add_commute [of _ c] add_strict_left_mono)
text{*Strict monotonicity in both arguments*}
lemma add_strict_mono:
"a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_trans])
apply (erule add_strict_left_mono)
done
lemma add_less_le_mono:
"a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
apply (erule add_strict_right_mono [THEN less_le_trans])
apply (erule add_left_mono)
done
lemma add_le_less_mono:
"a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
apply (erule add_right_mono [THEN le_less_trans])
apply (erule add_strict_left_mono)
done
end
class pordered_ab_semigroup_add_imp_le =
pordered_cancel_ab_semigroup_add +
assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
begin
lemma add_less_imp_less_left:
assumes less: "c + a < c + b" shows "a < b"
proof -
from less have le: "c + a <= c + b" by (simp add: order_le_less)
have "a <= b"
apply (insert le)
apply (drule add_le_imp_le_left)
by (insert le, drule add_le_imp_le_left, assumption)
moreover have "a \<noteq> b"
proof (rule ccontr)
assume "~(a \<noteq> b)"
then have "a = b" by simp
then have "c + a = c + b" by simp
with less show "False"by simp
qed
ultimately show "a < b" by (simp add: order_le_less)
qed
lemma add_less_imp_less_right:
"a + c < b + c \<Longrightarrow> a < b"
apply (rule add_less_imp_less_left [of c])
apply (simp add: add_commute)
done
lemma add_less_cancel_left [simp]:
"c + a < c + b \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_left add_strict_left_mono)
lemma add_less_cancel_right [simp]:
"a + c < b + c \<longleftrightarrow> a < b"
by (blast intro: add_less_imp_less_right add_strict_right_mono)
lemma add_le_cancel_left [simp]:
"c + a \<le> c + b \<longleftrightarrow> a \<le> b"
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono)
lemma add_le_cancel_right [simp]:
"a + c \<le> b + c \<longleftrightarrow> a \<le> b"
by (simp add: add_commute [of a c] add_commute [of b c])
lemma add_le_imp_le_right:
"a + c \<le> b + c \<Longrightarrow> a \<le> b"
by simp
lemma max_add_distrib_left:
"max x y + z = max (x + z) (y + z)"
unfolding max_def by auto
lemma min_add_distrib_left:
"min x y + z = min (x + z) (y + z)"
unfolding min_def by auto
end
subsection {* Support for reasoning about signs *}
class pordered_comm_monoid_add =
pordered_cancel_ab_semigroup_add + comm_monoid_add
begin
lemma add_pos_nonneg:
assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
proof -
have "0 + 0 < a + b"
using assms by (rule add_less_le_mono)
then show ?thesis by simp
qed
lemma add_pos_pos:
assumes "0 < a" and "0 < b" shows "0 < a + b"
by (rule add_pos_nonneg) (insert assms, auto)
lemma add_nonneg_pos:
assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
proof -
have "0 + 0 < a + b"
using assms by (rule add_le_less_mono)
then show ?thesis by simp
qed
lemma add_nonneg_nonneg:
assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
proof -
have "0 + 0 \<le> a + b"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemma add_neg_nonpos:
assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
proof -
have "a + b < 0 + 0"
using assms by (rule add_less_le_mono)
then show ?thesis by simp
qed
lemma add_neg_neg:
assumes "a < 0" and "b < 0" shows "a + b < 0"
by (rule add_neg_nonpos) (insert assms, auto)
lemma add_nonpos_neg:
assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
proof -
have "a + b < 0 + 0"
using assms by (rule add_le_less_mono)
then show ?thesis by simp
qed
lemma add_nonpos_nonpos:
assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
proof -
have "a + b \<le> 0 + 0"
using assms by (rule add_mono)
then show ?thesis by simp
qed
lemma add_nonneg_eq_0_iff:
assumes x: "0 \<le> x" and y: "0 \<le> y"
shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
proof (intro iffI conjI)
have "x = x + 0" by simp
also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
also assume "x + y = 0"
also have "0 \<le> x" using x .
finally show "x = 0" .
next
have "y = 0 + y" by simp
also have "0 + y \<le> x + y" using x by (rule add_right_mono)
also assume "x + y = 0"
also have "0 \<le> y" using y .
finally show "y = 0" .
next
assume "x = 0 \<and> y = 0"
then show "x + y = 0" by simp
qed
end
class pordered_ab_group_add =
ab_group_add + pordered_ab_semigroup_add
begin
subclass pordered_cancel_ab_semigroup_add ..
subclass pordered_ab_semigroup_add_imp_le
proof
fix a b c :: 'a
assume "c + a \<le> c + b"
hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
thus "a \<le> b" by simp
qed
subclass pordered_comm_monoid_add ..
lemma max_diff_distrib_left:
shows "max x y - z = max (x - z) (y - z)"
by (simp add: diff_minus, rule max_add_distrib_left)
lemma min_diff_distrib_left:
shows "min x y - z = min (x - z) (y - z)"
by (simp add: diff_minus, rule min_add_distrib_left)
lemma le_imp_neg_le:
assumes "a \<le> b" shows "-b \<le> -a"
proof -
have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono)
hence "0 \<le> -a+b" by simp
hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono)
thus ?thesis by (simp add: add_assoc)
qed
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
proof
assume "- b \<le> - a"
hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
thus "a\<le>b" by simp
next
assume "a\<le>b"
thus "-b \<le> -a" by (rule le_imp_neg_le)
qed
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
by (subst neg_le_iff_le [symmetric], simp)
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
by (subst neg_le_iff_le [symmetric], simp)
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
by (force simp add: less_le)
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
by (subst neg_less_iff_less [symmetric], simp)
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
by (subst neg_less_iff_less [symmetric], simp)
text{*The next several equations can make the simplifier loop!*}
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
proof -
have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
thus ?thesis by simp
qed
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
proof -
have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
thus ?thesis by simp
qed
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
proof -
have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
have "(- (- a) <= -b) = (b <= - a)"
apply (auto simp only: le_less)
apply (drule mm)
apply (simp_all)
apply (drule mm[simplified], assumption)
done
then show ?thesis by simp
qed
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
by (auto simp add: le_less minus_less_iff)
lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
proof -
have "(a < b) = (a + (- b) < b + (-b))"
by (simp only: add_less_cancel_right)
also have "... = (a - b < 0)" by (simp add: diff_minus)
finally show ?thesis .
qed
lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b"
apply (subst less_iff_diff_less_0 [of a])
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
apply (simp add: diff_minus add_ac)
done
lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c"
apply (subst less_iff_diff_less_0 [of "plus a b"])
apply (subst less_iff_diff_less_0 [of a])
apply (simp add: diff_minus add_ac)
done
lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
by (simp add: algebra_simps)
text{*Legacy - use @{text algebra_simps} *}
lemmas group_simps[noatp] = algebra_simps
end
text{*Legacy - use @{text algebra_simps} *}
lemmas group_simps[noatp] = algebra_simps
class ordered_ab_semigroup_add =
linorder + pordered_ab_semigroup_add
class ordered_cancel_ab_semigroup_add =
linorder + pordered_cancel_ab_semigroup_add
begin
subclass ordered_ab_semigroup_add ..
subclass pordered_ab_semigroup_add_imp_le
proof
fix a b c :: 'a
assume le: "c + a <= c + b"
show "a <= b"
proof (rule ccontr)
assume w: "~ a \<le> b"
hence "b <= a" by (simp add: linorder_not_le)
hence le2: "c + b <= c + a" by (rule add_left_mono)
have "a = b"
apply (insert le)
apply (insert le2)
apply (drule antisym, simp_all)
done
with w show False
by (simp add: linorder_not_le [symmetric])
qed
qed
end
class ordered_ab_group_add =
linorder + pordered_ab_group_add
begin
subclass ordered_cancel_ab_semigroup_add ..
lemma neg_less_eq_nonneg:
"- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof
assume A: "- a \<le> a" show "0 \<le> a"
proof (rule classical)
assume "\<not> 0 \<le> a"
then have "a < 0" by auto
with A have "- a < 0" by (rule le_less_trans)
then show ?thesis by auto
qed
next
assume A: "0 \<le> a" show "- a \<le> a"
proof (rule order_trans)
show "- a \<le> 0" using A by (simp add: minus_le_iff)
next
show "0 \<le> a" using A .
qed
qed
lemma less_eq_neg_nonpos:
"a \<le> - a \<longleftrightarrow> a \<le> 0"
proof
assume A: "a \<le> - a" show "a \<le> 0"
proof (rule classical)
assume "\<not> a \<le> 0"
then have "0 < a" by auto
then have "0 < - a" using A by (rule less_le_trans)
then show ?thesis by auto
qed
next
assume A: "a \<le> 0" show "a \<le> - a"
proof (rule order_trans)
show "0 \<le> - a" using A by (simp add: minus_le_iff)
next
show "a \<le> 0" using A .
qed
qed
lemma equal_neg_zero:
"a = - a \<longleftrightarrow> a = 0"
proof
assume "a = 0" then show "a = - a" by simp
next
assume A: "a = - a" show "a = 0"
proof (cases "0 \<le> a")
case True with A have "0 \<le> - a" by auto
with le_minus_iff have "a \<le> 0" by simp
with True show ?thesis by (auto intro: order_trans)
next
case False then have B: "a \<le> 0" by auto
with A have "- a \<le> 0" by auto
with B show ?thesis by (auto intro: order_trans)
qed
qed
lemma neg_equal_zero:
"- a = a \<longleftrightarrow> a = 0"
unfolding equal_neg_zero [symmetric] by auto
end
-- {* FIXME localize the following *}
lemma add_increasing:
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
by (insert add_mono [of 0 a b c], simp)
lemma add_increasing2:
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
by (simp add:add_increasing add_commute[of a])
lemma add_strict_increasing:
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
shows "[|0<a; b\<le>c|] ==> b < a + c"
by (insert add_less_le_mono [of 0 a b c], simp)
lemma add_strict_increasing2:
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
shows "[|0\<le>a; b<c|] ==> b < a + c"
by (insert add_le_less_mono [of 0 a b c], simp)
class pordered_ab_group_add_abs = pordered_ab_group_add + abs +
assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
and abs_ge_self: "a \<le> \<bar>a\<bar>"
and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
begin
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
unfolding neg_le_0_iff_le by simp
lemma abs_of_nonneg [simp]:
assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
proof (rule antisym)
from nonneg le_imp_neg_le have "- a \<le> 0" by simp
from this nonneg have "- a \<le> a" by (rule order_trans)
then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
qed (rule abs_ge_self)
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
by (rule antisym)
(auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
proof -
have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
proof (rule antisym)
assume zero: "\<bar>a\<bar> = 0"
with abs_ge_self show "a \<le> 0" by auto
from zero have "\<bar>-a\<bar> = 0" by simp
with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto
with neg_le_0_iff_le show "0 \<le> a" by auto
qed
then show ?thesis by auto
qed
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
by simp
lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
proof -
have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
thus ?thesis by simp
qed
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0"
proof
assume "\<bar>a\<bar> \<le> 0"
then have "\<bar>a\<bar> = 0" by (rule antisym) simp
thus "a = 0" by simp
next
assume "a = 0"
thus "\<bar>a\<bar> \<le> 0" by simp
qed
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
by (simp add: less_le)
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
proof -
have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
show ?thesis by (simp add: a)
qed
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
proof -
have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
then show ?thesis by simp
qed
lemma abs_minus_commute:
"\<bar>a - b\<bar> = \<bar>b - a\<bar>"
proof -
have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
also have "... = \<bar>b - a\<bar>" by simp
finally show ?thesis .
qed
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
by (rule abs_of_nonneg, rule less_imp_le)
lemma abs_of_nonpos [simp]:
assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
proof -
let ?b = "- a"
have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
unfolding abs_minus_cancel [of "?b"]
unfolding neg_le_0_iff_le [of "?b"]
unfolding minus_minus by (erule abs_of_nonneg)
then show ?thesis using assms by auto
qed
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
by (rule abs_of_nonpos, rule less_imp_le)
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
by (insert abs_ge_self, blast intro: order_trans)
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
by (insert abs_le_D1 [of "uminus a"], simp)
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
apply (simp add: algebra_simps)
apply (subgoal_tac "abs a = abs (plus b (minus a b))")
apply (erule ssubst)
apply (rule abs_triangle_ineq)
apply (rule arg_cong[of _ _ abs])
apply (simp add: algebra_simps)
done
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
apply (subst abs_le_iff)
apply auto
apply (rule abs_triangle_ineq2)
apply (subst abs_minus_commute)
apply (rule abs_triangle_ineq2)
done
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
proof -
have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl)
also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq)
finally show ?thesis by simp
qed
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
proof -
have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
finally show ?thesis .
qed
lemma abs_add_abs [simp]:
"\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
proof (rule antisym)
show "?L \<ge> ?R" by(rule abs_ge_self)
next
have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
also have "\<dots> = ?R" by simp
finally show "?L \<le> ?R" .
qed
end
subsection {* Lattice Ordered (Abelian) Groups *}
class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice
begin
lemma add_inf_distrib_left:
"a + inf b c = inf (a + b) (a + c)"
apply (rule antisym)
apply (simp_all add: le_infI)
apply (rule add_le_imp_le_left [of "uminus a"])
apply (simp only: add_assoc [symmetric], simp)
apply rule
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
done
lemma add_inf_distrib_right:
"inf a b + c = inf (a + c) (b + c)"
proof -
have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
thus ?thesis by (simp add: add_commute)
qed
end
class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice
begin
lemma add_sup_distrib_left:
"a + sup b c = sup (a + b) (a + c)"
apply (rule antisym)
apply (rule add_le_imp_le_left [of "uminus a"])
apply (simp only: add_assoc[symmetric], simp)
apply rule
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
apply (rule le_supI)
apply (simp_all)
done
lemma add_sup_distrib_right:
"sup a b + c = sup (a+c) (b+c)"
proof -
have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
thus ?thesis by (simp add: add_commute)
qed
end
class lordered_ab_group_add = pordered_ab_group_add + lattice
begin
subclass lordered_ab_group_add_meet ..
subclass lordered_ab_group_add_join ..
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
proof (rule inf_unique)
fix a b :: 'a
show "- sup (-a) (-b) \<le> a"
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
(simp, simp add: add_sup_distrib_left)
next
fix a b :: 'a
show "- sup (-a) (-b) \<le> b"
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
(simp, simp add: add_sup_distrib_left)
next
fix a b c :: 'a
assume "a \<le> b" "a \<le> c"
then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
(simp add: le_supI)
qed
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
proof (rule sup_unique)
fix a b :: 'a
show "a \<le> - inf (-a) (-b)"
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
(simp, simp add: add_inf_distrib_left)
next
fix a b :: 'a
show "b \<le> - inf (-a) (-b)"
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
(simp, simp add: add_inf_distrib_left)
next
fix a b c :: 'a
assume "a \<le> c" "b \<le> c"
then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
(simp add: le_infI)
qed
lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
by (simp add: inf_eq_neg_sup)
lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
by (simp add: sup_eq_neg_inf)
lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
proof -
have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
hence "0 = (-a + sup a b) + (inf a b + (-b))"
by (simp add: add_sup_distrib_left add_inf_distrib_right)
(simp add: algebra_simps)
thus ?thesis by (simp add: algebra_simps)
qed
subsection {* Positive Part, Negative Part, Absolute Value *}
definition
nprt :: "'a \<Rightarrow> 'a" where
"nprt x = inf x 0"
definition
pprt :: "'a \<Rightarrow> 'a" where
"pprt x = sup x 0"
lemma pprt_neg: "pprt (- x) = - nprt x"
proof -
have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero ..
also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup ..
finally have "sup (- x) 0 = - inf x 0" .
then show ?thesis unfolding pprt_def nprt_def .
qed
lemma nprt_neg: "nprt (- x) = - pprt x"
proof -
from pprt_neg have "pprt (- (- x)) = - nprt (- x)" .
then have "pprt x = - nprt (- x)" by simp
then show ?thesis by simp
qed
lemma prts: "a = pprt a + nprt a"
by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
lemma zero_le_pprt[simp]: "0 \<le> pprt a"
by (simp add: pprt_def)
lemma nprt_le_zero[simp]: "nprt a \<le> 0"
by (simp add: nprt_def)
lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
proof -
have a: "?l \<longrightarrow> ?r"
apply (auto)
apply (rule add_le_imp_le_right[of _ "uminus b" _])
apply (simp add: add_assoc)
done
have b: "?r \<longrightarrow> ?l"
apply (auto)
apply (rule add_le_imp_le_right[of _ "b" _])
apply (simp)
done
from a b show ?thesis by blast
qed
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
by (simp add: pprt_def le_iff_sup sup_ACI)
lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
by (simp add: nprt_def le_iff_inf inf_ACI)
lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
by (simp add: pprt_def le_iff_sup sup_ACI)
lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
by (simp add: nprt_def le_iff_inf inf_ACI)
lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
proof -
{
fix a::'a
assume hyp: "sup a (-a) = 0"
hence "sup a (-a) + a = a" by (simp)
hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right)
hence "sup (a+a) 0 <= a" by (simp)
hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
}
note p = this
assume hyp:"sup a (-a) = 0"
hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
from p[OF hyp] p[OF hyp2] show "a = 0" by simp
qed
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
apply (simp add: inf_eq_neg_sup)
apply (simp add: sup_commute)
apply (erule sup_0_imp_0)
done
lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
by (rule, erule inf_0_imp_0) simp
lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
by (rule, erule sup_0_imp_0) simp
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
"0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
proof
assume "0 <= a + a"
hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
by (simp add: add_sup_inf_distribs inf_ACI)
hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
hence "inf a 0 = 0" by (simp only: add_right_cancel)
then show "0 <= a" by (simp add: le_iff_inf inf_commute)
next
assume a: "0 <= a"
show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
qed
lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
proof
assume assm: "a + a = 0"
then have "a + a + - a = - a" by simp
then have "a + (a + - a) = - a" by (simp only: add_assoc)
then have a: "- a = a" by simp (*FIXME tune proof*)
show "a = 0" apply (rule antisym)
apply (unfold neg_le_iff_le [symmetric, of a])
unfolding a apply simp
unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
unfolding assm unfolding le_less apply simp_all done
next
assume "a = 0" then show "a + a = 0" by simp
qed
lemma zero_less_double_add_iff_zero_less_single_add:
"0 < a + a \<longleftrightarrow> 0 < a"
proof (cases "a = 0")
case True then show ?thesis by auto
next
case False then show ?thesis (*FIXME tune proof*)
unfolding less_le apply simp apply rule
apply clarify
apply rule
apply assumption
apply (rule notI)
unfolding double_zero [symmetric, of a] apply simp
done
qed
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
"a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
proof -
have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
ultimately show ?thesis by blast
qed
lemma double_add_less_zero_iff_single_less_zero [simp]:
"a + a < 0 \<longleftrightarrow> a < 0"
proof -
have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
ultimately show ?thesis by blast
qed
declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]
lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
proof -
from add_le_cancel_left [of "uminus a" "plus a a" zero]
have "(a <= -a) = (a+a <= 0)"
by (simp add: add_assoc[symmetric])
thus ?thesis by simp
qed
lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
proof -
from add_le_cancel_left [of "uminus a" zero "plus a a"]
have "(-a <= a) = (0 <= a+a)"
by (simp add: add_assoc[symmetric])
thus ?thesis by simp
qed
lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
by (simp add: le_iff_inf nprt_def inf_commute)
lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
by (simp add: le_iff_sup pprt_def sup_commute)
lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
by (simp add: le_iff_sup pprt_def sup_commute)
lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
by (simp add: le_iff_inf nprt_def inf_commute)
lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])
lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])
end
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
class lordered_ab_group_add_abs = lordered_ab_group_add + abs +
assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)"
begin
lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
proof -
have "0 \<le> \<bar>a\<bar>"
proof -
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
show ?thesis by (rule add_mono [OF a b, simplified])
qed
then have "0 \<le> sup a (- a)" unfolding abs_lattice .
then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
then show ?thesis
by (simp add: add_sup_inf_distribs sup_ACI
pprt_def nprt_def diff_minus abs_lattice)
qed
subclass pordered_ab_group_add_abs
proof
have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"
proof -
fix a b
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])
qed
have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
by (simp add: abs_lattice le_supI)
fix a b
show "0 \<le> \<bar>a\<bar>" by simp
show "a \<le> \<bar>a\<bar>"
by (auto simp add: abs_lattice)
show "\<bar>-a\<bar> = \<bar>a\<bar>"
by (simp add: abs_lattice sup_commute)
show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI)
show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
proof -
have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)
have a:"a+b <= sup ?m ?n" by (simp)
have b:"-a-b <= ?n" by (simp)
have c:"?n <= sup ?m ?n" by (simp)
from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
have e:"-a-b = -(a+b)" by (simp add: diff_minus)
from a d e have "abs(a+b) <= sup ?m ?n"
by (drule_tac abs_leI, auto)
with g[symmetric] show ?thesis by simp
qed
qed
end
lemma sup_eq_if:
fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
shows "sup a (- a) = (if a < 0 then - a else a)"
proof -
note add_le_cancel_right [of a a "- a", symmetric, simplified]
moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
then show ?thesis by (auto simp: sup_max max_def)
qed
lemma abs_if_lattice:
fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
by auto
text {* Needed for abelian cancellation simprocs: *}
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
apply (subst add_left_commute)
apply (subst add_left_cancel)
apply simp
done
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
apply (subst add_cancel_21[of _ _ _ 0, simplified])
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
done
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x'])
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
done
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
by (simp only: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
by (simp add: diff_minus)
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
by (simp add: add_assoc[symmetric])
lemma le_add_right_mono:
assumes
"a <= b + (c::'a::pordered_ab_group_add)"
"c <= d"
shows "a <= b + d"
apply (rule_tac order_trans[where y = "b+c"])
apply (simp_all add: prems)
done
lemma estimate_by_abs:
"a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b"
proof -
assume "a+b <= c"
hence 2: "a <= c+(-b)" by (simp add: algebra_simps)
have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
show ?thesis by (rule le_add_right_mono[OF 2 3])
qed
subsection {* Tools setup *}
lemma add_mono_thms_ordered_semiring [noatp]:
fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
by (rule add_mono, clarify+)+
lemma add_mono_thms_ordered_field [noatp]:
fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
by (auto intro: add_strict_right_mono add_strict_left_mono
add_less_le_mono add_le_less_mono add_strict_mono)
text{*Simplification of @{term "x-y < 0"}, etc.*}
lemmas diff_less_0_iff_less [simp, noatp] = less_iff_diff_less_0 [symmetric]
lemmas diff_le_0_iff_le [simp, noatp] = le_iff_diff_le_0 [symmetric]
ML {*
structure ab_group_add_cancel = Abel_Cancel
(
(* term order for abelian groups *)
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
[@{const_name HOL.zero}, @{const_name HOL.plus},
@{const_name HOL.uminus}, @{const_name HOL.minus}]
| agrp_ord _ = ~1;
fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);
local
val ac1 = mk_meta_eq @{thm add_assoc};
val ac2 = mk_meta_eq @{thm add_commute};
val ac3 = mk_meta_eq @{thm add_left_commute};
fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
SOME ac1
| solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
if termless_agrp (y, x) then SOME ac3 else NONE
| solve_add_ac thy _ (_ $ x $ y) =
if termless_agrp (y, x) then SOME ac2 else NONE
| solve_add_ac thy _ _ = NONE
in
val add_ac_proc = Simplifier.simproc (the_context ())
"add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
end;
val eq_reflection = @{thm eq_reflection};
val T = @{typ "'a::ab_group_add"};
val cancel_ss = HOL_basic_ss settermless termless_agrp
addsimprocs [add_ac_proc] addsimps
[@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
@{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
@{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
@{thm minus_add_cancel}];
val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
val dest_eqI =
fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
);
*}
ML {*
Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
*}
end