(* Title: HOL/Map.thy
Author: Tobias Nipkow, based on a theory by David von Oheimb
Copyright 1997-2003 TU Muenchen
The datatype of "maps"; strongly resembles maps in VDM.
*)
section \<open>Maps\<close>
theory Map
imports List
begin
type_synonym ('a, 'b) "map" = "'a \<Rightarrow> 'b option" (infixr "\<rightharpoonup>" 0)
abbreviation
empty :: "'a \<rightharpoonup> 'b" where
"empty \<equiv> \<lambda>x. None"
definition
map_comp :: "('b \<rightharpoonup> 'c) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'c)" (infixl "\<circ>\<^sub>m" 55) where
"f \<circ>\<^sub>m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
definition
map_add :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b)" (infixl "++" 100) where
"m1 ++ m2 = (\<lambda>x. case m2 x of None \<Rightarrow> m1 x | Some y \<Rightarrow> Some y)"
definition
restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)" (infixl "|`" 110) where
"m|`A = (\<lambda>x. if x \<in> A then m x else None)"
notation (latex output)
restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
definition
dom :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set" where
"dom m = {a. m a \<noteq> None}"
definition
ran :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'b set" where
"ran m = {b. \<exists>a. m a = Some b}"
definition
map_le :: "('a \<rightharpoonup> 'b) \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> bool" (infix "\<subseteq>\<^sub>m" 50) where
"(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) \<longleftrightarrow> (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"
nonterminal maplets and maplet
syntax
"_maplet" :: "['a, 'a] \<Rightarrow> maplet" ("_ /|->/ _")
"_maplets" :: "['a, 'a] \<Rightarrow> maplet" ("_ /[|->]/ _")
"" :: "maplet \<Rightarrow> maplets" ("_")
"_Maplets" :: "[maplet, maplets] \<Rightarrow> maplets" ("_,/ _")
"_MapUpd" :: "['a \<rightharpoonup> 'b, maplets] \<Rightarrow> 'a \<rightharpoonup> 'b" ("_/'(_')" [900,0]900)
"_Map" :: "maplets \<Rightarrow> 'a \<rightharpoonup> 'b" ("(1[_])")
syntax (xsymbols)
"_maplet" :: "['a, 'a] \<Rightarrow> maplet" ("_ /\<mapsto>/ _")
"_maplets" :: "['a, 'a] \<Rightarrow> maplet" ("_ /[\<mapsto>]/ _")
translations
"_MapUpd m (_Maplets xy ms)" \<rightleftharpoons> "_MapUpd (_MapUpd m xy) ms"
"_MapUpd m (_maplet x y)" \<rightleftharpoons> "m(x := CONST Some y)"
"_Map ms" \<rightleftharpoons> "_MapUpd (CONST empty) ms"
"_Map (_Maplets ms1 ms2)" \<leftharpoondown> "_MapUpd (_Map ms1) ms2"
"_Maplets ms1 (_Maplets ms2 ms3)" \<leftharpoondown> "_Maplets (_Maplets ms1 ms2) ms3"
primrec
map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where
"map_of [] = empty"
| "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"
definition
map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where
"map_upds m xs ys = m ++ map_of (rev (zip xs ys))"
translations
"_MapUpd m (_maplets x y)" \<rightleftharpoons> "CONST map_upds m x y"
lemma map_of_Cons_code [code]:
"map_of [] k = None"
"map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
by simp_all
subsection \<open>@{term [source] empty}\<close>
lemma empty_upd_none [simp]: "empty(x := None) = empty"
by (rule ext) simp
subsection \<open>@{term [source] map_upd}\<close>
lemma map_upd_triv: "t k = Some x \<Longrightarrow> t(k\<mapsto>x) = t"
by (rule ext) simp
lemma map_upd_nonempty [simp]: "t(k\<mapsto>x) \<noteq> empty"
proof
assume "t(k \<mapsto> x) = empty"
then have "(t(k \<mapsto> x)) k = None" by simp
then show False by simp
qed
lemma map_upd_eqD1:
assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
shows "x = y"
proof -
from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
then show ?thesis by simp
qed
lemma map_upd_Some_unfold:
"((m(a\<mapsto>b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
by auto
lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
by auto
lemma finite_range_updI: "finite (range f) \<Longrightarrow> finite (range (f(a\<mapsto>b)))"
unfolding image_def
apply (simp (no_asm_use) add:full_SetCompr_eq)
apply (rule finite_subset)
prefer 2 apply assumption
apply (auto)
done
subsection \<open>@{term [source] map_of}\<close>
lemma map_of_eq_None_iff:
"(map_of xys x = None) = (x \<notin> fst ` (set xys))"
by (induct xys) simp_all
lemma map_of_eq_Some_iff [simp]:
"distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
apply (induct xys)
apply simp
apply (auto simp: map_of_eq_None_iff [symmetric])
done
lemma Some_eq_map_of_iff [simp]:
"distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
by (auto simp del: map_of_eq_Some_iff simp: map_of_eq_Some_iff [symmetric])
lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
\<Longrightarrow> map_of xys x = Some y"
apply (induct xys)
apply simp
apply force
done
lemma map_of_zip_is_None [simp]:
"length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
by (induct rule: list_induct2) simp_all
lemma map_of_zip_is_Some:
assumes "length xs = length ys"
shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
using assms by (induct rule: list_induct2) simp_all
lemma map_of_zip_upd:
fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
assumes "length ys = length xs"
and "length zs = length xs"
and "x \<notin> set xs"
and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
shows "map_of (zip xs ys) = map_of (zip xs zs)"
proof
fix x' :: 'a
show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
proof (cases "x = x'")
case True
from assms True map_of_zip_is_None [of xs ys x']
have "map_of (zip xs ys) x' = None" by simp
moreover from assms True map_of_zip_is_None [of xs zs x']
have "map_of (zip xs zs) x' = None" by simp
ultimately show ?thesis by simp
next
case False from assms
have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
with False show ?thesis by simp
qed
qed
lemma map_of_zip_inject:
assumes "length ys = length xs"
and "length zs = length xs"
and dist: "distinct xs"
and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
shows "ys = zs"
using assms(1) assms(2)[symmetric]
using dist map_of
proof (induct ys xs zs rule: list_induct3)
case Nil show ?case by simp
next
case (Cons y ys x xs z zs)
from \<open>map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))\<close>
have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
from Cons have "length ys = length xs" and "length zs = length xs"
and "x \<notin> set xs" by simp_all
then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
with Cons.hyps \<open>distinct (x # xs)\<close> have "ys = zs" by simp
moreover from map_of have "y = z" by (rule map_upd_eqD1)
ultimately show ?case by simp
qed
lemma map_of_zip_map:
"map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
by (induct xs) (simp_all add: fun_eq_iff)
lemma finite_range_map_of: "finite (range (map_of xys))"
apply (induct xys)
apply (simp_all add: image_constant)
apply (rule finite_subset)
prefer 2 apply assumption
apply auto
done
lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
by (induct xs) (auto split: if_splits)
lemma map_of_mapk_SomeI:
"inj f \<Longrightarrow> map_of t k = Some x \<Longrightarrow>
map_of (map (case_prod (\<lambda>k. Pair (f k))) t) (f k) = Some x"
by (induct t) (auto simp: inj_eq)
lemma weak_map_of_SomeI: "(k, x) \<in> set l \<Longrightarrow> \<exists>x. map_of l k = Some x"
by (induct l) auto
lemma map_of_filter_in:
"map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (case_prod P) xs) k = Some z"
by (induct xs) auto
lemma map_of_map:
"map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"
by (induct xs) (auto simp: fun_eq_iff)
lemma dom_map_option:
"dom (\<lambda>k. map_option (f k) (m k)) = dom m"
by (simp add: dom_def)
lemma dom_map_option_comp [simp]:
"dom (map_option g \<circ> m) = dom m"
using dom_map_option [of "\<lambda>_. g" m] by (simp add: comp_def)
subsection \<open>@{const map_option} related\<close>
lemma map_option_o_empty [simp]: "map_option f o empty = empty"
by (rule ext) simp
lemma map_option_o_map_upd [simp]:
"map_option f o m(a\<mapsto>b) = (map_option f o m)(a\<mapsto>f b)"
by (rule ext) simp
subsection \<open>@{term [source] map_comp} related\<close>
lemma map_comp_empty [simp]:
"m \<circ>\<^sub>m empty = empty"
"empty \<circ>\<^sub>m m = empty"
by (auto simp: map_comp_def split: option.splits)
lemma map_comp_simps [simp]:
"m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
"m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
by (auto simp: map_comp_def)
lemma map_comp_Some_iff:
"((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
by (auto simp: map_comp_def split: option.splits)
lemma map_comp_None_iff:
"((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
by (auto simp: map_comp_def split: option.splits)
subsection \<open>\<open>++\<close>\<close>
lemma map_add_empty[simp]: "m ++ empty = m"
by(simp add: map_add_def)
lemma empty_map_add[simp]: "empty ++ m = m"
by (rule ext) (simp add: map_add_def split: option.split)
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
by (rule ext) (simp add: map_add_def split: option.split)
lemma map_add_Some_iff:
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
by (simp add: map_add_def split: option.split)
lemma map_add_SomeD [dest!]:
"(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
by (rule map_add_Some_iff [THEN iffD1])
lemma map_add_find_right [simp]: "n k = Some xx \<Longrightarrow> (m ++ n) k = Some xx"
by (subst map_add_Some_iff) fast
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
by (simp add: map_add_def split: option.split)
lemma map_add_upd[simp]: "f ++ g(x\<mapsto>y) = (f ++ g)(x\<mapsto>y)"
by (rule ext) (simp add: map_add_def)
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
by (simp add: map_upds_def)
lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
by (rule ext) (auto simp: map_add_def dom_def split: option.split)
lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
unfolding map_add_def
apply (induct xs)
apply simp
apply (rule ext)
apply (simp split add: option.split)
done
lemma finite_range_map_of_map_add:
"finite (range f) \<Longrightarrow> finite (range (f ++ map_of l))"
apply (induct l)
apply (auto simp del: fun_upd_apply)
apply (erule finite_range_updI)
done
lemma inj_on_map_add_dom [iff]:
"inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)
lemma map_upds_fold_map_upd:
"m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"
unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)
fix ks :: "'a list" and vs :: "'b list"
assume "length ks = length vs"
then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"
by(induct arbitrary: m rule: list_induct2) simp_all
qed
lemma map_add_map_of_foldr:
"m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
by (induct ps) (auto simp: fun_eq_iff map_add_def)
subsection \<open>@{term [source] restrict_map}\<close>
lemma restrict_map_to_empty [simp]: "m|`{} = empty"
by (simp add: restrict_map_def)
lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
by (auto simp: restrict_map_def)
lemma restrict_map_empty [simp]: "empty|`D = empty"
by (simp add: restrict_map_def)
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
by (simp add: restrict_map_def)
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
by (simp add: restrict_map_def)
lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
by (auto simp: restrict_map_def ran_def split: split_if_asm)
lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
by (auto simp: restrict_map_def dom_def split: split_if_asm)
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
by (rule ext) (auto simp: restrict_map_def)
lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
by (rule ext) (auto simp: restrict_map_def)
lemma restrict_fun_upd [simp]:
"m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
by (simp add: restrict_map_def fun_eq_iff)
lemma fun_upd_None_restrict [simp]:
"(m|`D)(x := None) = (if x \<in> D then m|`(D - {x}) else m|`D)"
by (simp add: restrict_map_def fun_eq_iff)
lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
by (simp add: restrict_map_def fun_eq_iff)
lemma fun_upd_restrict_conv [simp]:
"x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
by (simp add: restrict_map_def fun_eq_iff)
lemma map_of_map_restrict:
"map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
lemma restrict_complement_singleton_eq:
"f |` (- {x}) = f(x := None)"
by (simp add: restrict_map_def fun_eq_iff)
subsection \<open>@{term [source] map_upds}\<close>
lemma map_upds_Nil1 [simp]: "m([] [\<mapsto>] bs) = m"
by (simp add: map_upds_def)
lemma map_upds_Nil2 [simp]: "m(as [\<mapsto>] []) = m"
by (simp add:map_upds_def)
lemma map_upds_Cons [simp]: "m(a#as [\<mapsto>] b#bs) = (m(a\<mapsto>b))(as[\<mapsto>]bs)"
by (simp add:map_upds_def)
lemma map_upds_append1 [simp]: "size xs < size ys \<Longrightarrow>
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
apply(induct xs arbitrary: ys m)
apply (clarsimp simp add: neq_Nil_conv)
apply (case_tac ys)
apply simp
apply simp
done
lemma map_upds_list_update2_drop [simp]:
"size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
apply (induct xs arbitrary: m ys i)
apply simp
apply (case_tac ys)
apply simp
apply (simp split: nat.split)
done
lemma map_upd_upds_conv_if:
"(f(x\<mapsto>y))(xs [\<mapsto>] ys) =
(if x \<in> set(take (length ys) xs) then f(xs [\<mapsto>] ys)
else (f(xs [\<mapsto>] ys))(x\<mapsto>y))"
apply (induct xs arbitrary: x y ys f)
apply simp
apply (case_tac ys)
apply (auto split: split_if simp: fun_upd_twist)
done
lemma map_upds_twist [simp]:
"a \<notin> set as \<Longrightarrow> m(a\<mapsto>b)(as[\<mapsto>]bs) = m(as[\<mapsto>]bs)(a\<mapsto>b)"
using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)
lemma map_upds_apply_nontin [simp]:
"x \<notin> set xs \<Longrightarrow> (f(xs[\<mapsto>]ys)) x = f x"
apply (induct xs arbitrary: ys)
apply simp
apply (case_tac ys)
apply (auto simp: map_upd_upds_conv_if)
done
lemma fun_upds_append_drop [simp]:
"size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
apply (induct xs arbitrary: m ys)
apply simp
apply (case_tac ys)
apply simp_all
done
lemma fun_upds_append2_drop [simp]:
"size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
apply (induct xs arbitrary: m ys)
apply simp
apply (case_tac ys)
apply simp_all
done
lemma restrict_map_upds[simp]:
"\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
\<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
apply (induct xs arbitrary: m ys)
apply simp
apply (case_tac ys)
apply simp
apply (simp add: Diff_insert [symmetric] insert_absorb)
apply (simp add: map_upd_upds_conv_if)
done
subsection \<open>@{term [source] dom}\<close>
lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
by (auto simp: dom_def)
lemma domI: "m a = Some b \<Longrightarrow> a \<in> dom m"
by (simp add: dom_def)
(* declare domI [intro]? *)
lemma domD: "a \<in> dom m \<Longrightarrow> \<exists>b. m a = Some b"
by (cases "m a") (auto simp add: dom_def)
lemma domIff [iff, simp del]: "a \<in> dom m \<longleftrightarrow> m a \<noteq> None"
by (simp add: dom_def)
lemma dom_empty [simp]: "dom empty = {}"
by (simp add: dom_def)
lemma dom_fun_upd [simp]:
"dom(f(x := y)) = (if y = None then dom f - {x} else insert x (dom f))"
by (auto simp: dom_def)
lemma dom_if:
"dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
by (auto split: if_splits)
lemma dom_map_of_conv_image_fst:
"dom (map_of xys) = fst ` set xys"
by (induct xys) (auto simp add: dom_if)
lemma dom_map_of_zip [simp]: "length xs = length ys \<Longrightarrow> dom (map_of (zip xs ys)) = set xs"
by (induct rule: list_induct2) (auto simp: dom_if)
lemma finite_dom_map_of: "finite (dom (map_of l))"
by (induct l) (auto simp: dom_def insert_Collect [symmetric])
lemma dom_map_upds [simp]:
"dom(m(xs[\<mapsto>]ys)) = set(take (length ys) xs) \<union> dom m"
apply (induct xs arbitrary: m ys)
apply simp
apply (case_tac ys)
apply auto
done
lemma dom_map_add [simp]: "dom (m ++ n) = dom n \<union> dom m"
by (auto simp: dom_def)
lemma dom_override_on [simp]:
"dom (override_on f g A) =
(dom f - {a. a \<in> A - dom g}) \<union> {a. a \<in> A \<inter> dom g}"
by (auto simp: dom_def override_on_def)
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1 ++ m2 = m2 ++ m1"
by (rule ext) (force simp: map_add_def dom_def split: option.split)
lemma map_add_dom_app_simps:
"m \<in> dom l2 \<Longrightarrow> (l1 ++ l2) m = l2 m"
"m \<notin> dom l1 \<Longrightarrow> (l1 ++ l2) m = l2 m"
"m \<notin> dom l2 \<Longrightarrow> (l1 ++ l2) m = l1 m"
by (auto simp add: map_add_def split: option.split_asm)
lemma dom_const [simp]:
"dom (\<lambda>x. Some (f x)) = UNIV"
by auto
(* Due to John Matthews - could be rephrased with dom *)
lemma finite_map_freshness:
"finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
\<exists>x. f x = None"
by (bestsimp dest: ex_new_if_finite)
lemma dom_minus:
"f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
unfolding dom_def by simp
lemma insert_dom:
"f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
unfolding dom_def by auto
lemma map_of_map_keys:
"set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
lemma map_of_eqI:
assumes set_eq: "set (map fst xs) = set (map fst ys)"
assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
shows "map_of xs = map_of ys"
proof (rule ext)
fix k show "map_of xs k = map_of ys k"
proof (cases "map_of xs k")
case None
then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
with set_eq have "k \<notin> set (map fst ys)" by simp
then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
with None show ?thesis by simp
next
case (Some v)
then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
with map_eq show ?thesis by auto
qed
qed
lemma map_of_eq_dom:
assumes "map_of xs = map_of ys"
shows "fst ` set xs = fst ` set ys"
proof -
from assms have "dom (map_of xs) = dom (map_of ys)" by simp
then show ?thesis by (simp add: dom_map_of_conv_image_fst)
qed
lemma finite_set_of_finite_maps:
assumes "finite A" "finite B"
shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
proof -
let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
have "?S = ?S'"
proof
show "?S \<subseteq> ?S'" by (auto simp: dom_def ran_def image_def)
show "?S' \<subseteq> ?S"
proof
fix m assume "m \<in> ?S'"
hence 1: "dom m = A" by force
hence 2: "ran m \<subseteq> B" using \<open>m \<in> ?S'\<close> by (auto simp: dom_def ran_def)
from 1 2 show "m \<in> ?S" by blast
qed
qed
with assms show ?thesis by(simp add: finite_set_of_finite_funs)
qed
subsection \<open>@{term [source] ran}\<close>
lemma ranI: "m a = Some b \<Longrightarrow> b \<in> ran m"
by (auto simp: ran_def)
(* declare ranI [intro]? *)
lemma ran_empty [simp]: "ran empty = {}"
by (auto simp: ran_def)
lemma ran_map_upd [simp]: "m a = None \<Longrightarrow> ran(m(a\<mapsto>b)) = insert b (ran m)"
unfolding ran_def
apply auto
apply (subgoal_tac "aa \<noteq> a")
apply auto
done
lemma ran_distinct:
assumes dist: "distinct (map fst al)"
shows "ran (map_of al) = snd ` set al"
using assms
proof (induct al)
case Nil
then show ?case by simp
next
case (Cons kv al)
then have "ran (map_of al) = snd ` set al" by simp
moreover from Cons.prems have "map_of al (fst kv) = None"
by (simp add: map_of_eq_None_iff)
ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
qed
lemma ran_map_option: "ran (\<lambda>x. map_option f (m x)) = f ` ran m"
by (auto simp add: ran_def)
subsection \<open>\<open>map_le\<close>\<close>
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
by (simp add: map_le_def)
lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
by (force simp add: map_le_def)
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
by (fastforce simp add: map_le_def)
lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
by (force simp add: map_le_def)
lemma map_le_upds [simp]:
"f \<subseteq>\<^sub>m g \<Longrightarrow> f(as [\<mapsto>] bs) \<subseteq>\<^sub>m g(as [\<mapsto>] bs)"
apply (induct as arbitrary: f g bs)
apply simp
apply (case_tac bs)
apply auto
done
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
by (fastforce simp add: map_le_def dom_def)
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
by (simp add: map_le_def)
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
by (auto simp add: map_le_def dom_def)
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
unfolding map_le_def
apply (rule ext)
apply (case_tac "x \<in> dom f", simp)
apply (case_tac "x \<in> dom g", simp, fastforce)
done
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m g ++ f"
by (fastforce simp: map_le_def)
lemma map_le_iff_map_add_commute: "f \<subseteq>\<^sub>m f ++ g \<longleftrightarrow> f ++ g = g ++ f"
by (fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)
lemma map_add_le_mapE: "f ++ g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
by (fastforce simp: map_le_def map_add_def dom_def)
lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f ++ g \<subseteq>\<^sub>m h"
by (auto simp: map_le_def map_add_def dom_def split: option.splits)
lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
proof(rule iffI)
assume "\<exists>v. f = [x \<mapsto> v]"
thus "dom f = {x}" by(auto split: split_if_asm)
next
assume "dom f = {x}"
then obtain v where "f x = Some v" by auto
hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)
moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using \<open>dom f = {x}\<close> \<open>f x = Some v\<close>
by(auto simp add: map_le_def)
ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)
thus "\<exists>v. f = [x \<mapsto> v]" by blast
qed
subsection \<open>Various\<close>
lemma set_map_of_compr:
assumes distinct: "distinct (map fst xs)"
shows "set xs = {(k, v). map_of xs k = Some v}"
using assms
proof (induct xs)
case Nil
then show ?case by simp
next
case (Cons x xs)
obtain k v where "x = (k, v)" by (cases x) blast
with Cons.prems have "k \<notin> dom (map_of xs)"
by (simp add: dom_map_of_conv_image_fst)
then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
{(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
by (auto split: if_splits)
from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
with * \<open>x = (k, v)\<close> show ?case by simp
qed
lemma map_of_inject_set:
assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"
shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?lhs
moreover from \<open>distinct (map fst xs)\<close> have "set xs = {(k, v). map_of xs k = Some v}"
by (rule set_map_of_compr)
moreover from \<open>distinct (map fst ys)\<close> have "set ys = {(k, v). map_of ys k = Some v}"
by (rule set_map_of_compr)
ultimately show ?rhs by simp
next
assume ?rhs show ?lhs
proof
fix k
show "map_of xs k = map_of ys k"
proof (cases "map_of xs k")
case None
with \<open>?rhs\<close> have "map_of ys k = None"
by (simp add: map_of_eq_None_iff)
with None show ?thesis by simp
next
case (Some v)
with distinct \<open>?rhs\<close> have "map_of ys k = Some v"
by simp
with Some show ?thesis by simp
qed
qed
qed
end