src/HOL/Wfrec.thy
author wenzelm
Mon, 28 Dec 2015 01:26:34 +0100
changeset 61944 5d06ecfdb472
parent 61799 4cf66f21b764
child 63040 eb4ddd18d635
permissions -rw-r--r--
prefer symbols for "abs";

(*  Title:      HOL/Wfrec.thy
    Author:     Tobias Nipkow
    Author:     Lawrence C Paulson
    Author:     Konrad Slind
*)

section \<open>Well-Founded Recursion Combinator\<close>

theory Wfrec
imports Wellfounded
begin

inductive wfrec_rel :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" for R F where
  wfrecI: "(\<And>z. (z, x) \<in> R \<Longrightarrow> wfrec_rel R F z (g z)) \<Longrightarrow> wfrec_rel R F x (F g x)"

definition cut :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b" where
  "cut f R x = (\<lambda>y. if (y, x) \<in> R then f y else undefined)"

definition adm_wf :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)) \<Rightarrow> bool" where
  "adm_wf R F \<longleftrightarrow> (\<forall>f g x. (\<forall>z. (z, x) \<in> R \<longrightarrow> f z = g z) \<longrightarrow> F f x = F g x)"

definition wfrec :: "('a \<times> 'a) set \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)) \<Rightarrow> ('a \<Rightarrow> 'b)" where
  "wfrec R F = (\<lambda>x. THE y. wfrec_rel R (\<lambda>f x. F (cut f R x) x) x y)"

lemma cuts_eq: "(cut f R x = cut g R x) \<longleftrightarrow> (\<forall>y. (y, x) \<in> R \<longrightarrow> f y = g y)"
  by (simp add: fun_eq_iff cut_def)

lemma cut_apply: "(x, a) \<in> R \<Longrightarrow> cut f R a x = f x"
  by (simp add: cut_def)

text\<open>Inductive characterization of wfrec combinator; for details see:
John Harrison, "Inductive definitions: automation and application"\<close>

lemma theI_unique: "\<exists>!x. P x \<Longrightarrow> P x \<longleftrightarrow> x = The P"
  by (auto intro: the_equality[symmetric] theI)

lemma wfrec_unique: assumes "adm_wf R F" "wf R" shows "\<exists>!y. wfrec_rel R F x y"
  using \<open>wf R\<close>
proof induct
  def f \<equiv> "\<lambda>y. THE z. wfrec_rel R F y z"
  case (less x)
  then have "\<And>y z. (y, x) \<in> R \<Longrightarrow> wfrec_rel R F y z \<longleftrightarrow> z = f y"
    unfolding f_def by (rule theI_unique)
  with \<open>adm_wf R F\<close> show ?case
    by (subst wfrec_rel.simps) (auto simp: adm_wf_def)
qed

lemma adm_lemma: "adm_wf R (\<lambda>f x. F (cut f R x) x)"
  by (auto simp add: adm_wf_def
           intro!: arg_cong[where f="\<lambda>x. F x y" for y] cuts_eq[THEN iffD2])

lemma wfrec: "wf R \<Longrightarrow> wfrec R F a = F (cut (wfrec R F) R a) a"
apply (simp add: wfrec_def)
apply (rule adm_lemma [THEN wfrec_unique, THEN the1_equality], assumption)
apply (rule wfrec_rel.wfrecI)
apply (erule adm_lemma [THEN wfrec_unique, THEN theI'])
done


text\<open>* This form avoids giant explosions in proofs.  NOTE USE OF ==\<close>
lemma def_wfrec: "f \<equiv> wfrec R F \<Longrightarrow> wf R \<Longrightarrow> f a = F (cut f R a) a"
 by (auto intro: wfrec)


subsubsection \<open>Well-founded recursion via genuine fixpoints\<close>

lemma wfrec_fixpoint:
  assumes WF: "wf R" and ADM: "adm_wf R F"
  shows "wfrec R F = F (wfrec R F)"
proof (rule ext)
  fix x
  have "wfrec R F x = F (cut (wfrec R F) R x) x"
    using wfrec[of R F] WF by simp
  also
  { have "\<And> y. (y,x) \<in> R \<Longrightarrow> (cut (wfrec R F) R x) y = (wfrec R F) y"
      by (auto simp add: cut_apply)
    hence "F (cut (wfrec R F) R x) x = F (wfrec R F) x"
      using ADM adm_wf_def[of R F] by auto }
  finally show "wfrec R F x = F (wfrec R F) x" .
qed

subsection \<open>Wellfoundedness of \<open>same_fst\<close>\<close>

definition same_fst :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> ('b \<times> 'b) set) \<Rightarrow> (('a \<times> 'b) \<times> ('a \<times> 'b)) set" where
  "same_fst P R = {((x', y'), (x, y)) . x' = x \<and> P x \<and> (y',y) \<in> R x}"
   \<comment>\<open>For @{const wfrec} declarations where the first n parameters
       stay unchanged in the recursive call.\<close>

lemma same_fstI [intro!]: "P x \<Longrightarrow> (y', y) \<in> R x \<Longrightarrow> ((x, y'), (x, y)) \<in> same_fst P R"
  by (simp add: same_fst_def)

lemma wf_same_fst:
  assumes prem: "\<And>x. P x \<Longrightarrow> wf (R x)"
  shows "wf (same_fst P R)"
apply (simp cong del: imp_cong add: wf_def same_fst_def)
apply (intro strip)
apply (rename_tac a b)
apply (case_tac "wf (R a)")
 apply (erule_tac a = b in wf_induct, blast)
apply (blast intro: prem)
done

end