(* Title: HOL/Library/Accessible_Part.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header {* The accessible part of a relation *}
theory Accessible_Part
imports Main
begin
subsection {* Inductive definition *}
text {*
Inductive definition of the accessible part @{term "acc r"} of a
relation; see also \cite{paulin-tlca}.
*}
consts
acc :: "('a \<times> 'a) set => 'a set"
inductive "acc r"
intros
accI: "(!!y. (y, x) \<in> r ==> y \<in> acc r) ==> x \<in> acc r"
syntax
termi :: "('a \<times> 'a) set => 'a set"
translations
"termi r" == "acc (r\<inverse>)"
subsection {* Induction rules *}
theorem acc_induct:
assumes major: "a \<in> acc r"
assumes hyp: "!!x. x \<in> acc r ==> \<forall>y. (y, x) \<in> r --> P y ==> P x"
shows "P a"
apply (rule major [THEN acc.induct])
apply (rule hyp)
apply (rule accI)
apply fast
apply fast
done
theorems acc_induct_rule = acc_induct [rule_format, induct set: acc]
theorem acc_downward: "b \<in> acc r ==> (a, b) \<in> r ==> a \<in> acc r"
apply (erule acc.elims)
apply fast
done
lemma acc_downwards_aux: "(b, a) \<in> r\<^sup>* ==> a \<in> acc r --> b \<in> acc r"
apply (erule rtrancl_induct)
apply blast
apply (blast dest: acc_downward)
done
theorem acc_downwards: "a \<in> acc r ==> (b, a) \<in> r\<^sup>* ==> b \<in> acc r"
apply (blast dest: acc_downwards_aux)
done
theorem acc_wfI: "\<forall>x. x \<in> acc r ==> wf r"
apply (rule wfUNIVI)
apply (induct_tac P x rule: acc_induct)
apply blast
apply blast
done
theorem acc_wfD: "wf r ==> x \<in> acc r"
apply (erule wf_induct)
apply (rule accI)
apply blast
done
theorem wf_acc_iff: "wf r = (\<forall>x. x \<in> acc r)"
apply (blast intro: acc_wfI dest: acc_wfD)
done
end