(* Title: Pure/variable.ML
ID: $Id$
Author: Makarius
Fixed type/term variables and polymorphic term abbreviations.
*)
signature VARIABLE =
sig
val is_body: Context.proof -> bool
val set_body: bool -> Context.proof -> Context.proof
val restore_body: Context.proof -> Context.proof -> Context.proof
val names_of: Context.proof -> Name.context
val fixes_of: Context.proof -> (string * string) list
val binds_of: Context.proof -> (typ * term) Vartab.table
val constraints_of: Context.proof -> typ Vartab.table * sort Vartab.table
val is_declared: Context.proof -> string -> bool
val is_fixed: Context.proof -> string -> bool
val newly_fixed: Context.proof -> Context.proof -> string -> bool
val default_type: Context.proof -> string -> typ option
val def_type: Context.proof -> bool -> indexname -> typ option
val def_sort: Context.proof -> indexname -> sort option
val declare_constraints: term -> Context.proof -> Context.proof
val declare_internal: term -> Context.proof -> Context.proof
val declare_term: term -> Context.proof -> Context.proof
val declare_thm: thm -> Context.proof -> Context.proof
val thm_context: thm -> Context.proof
val variant_frees: Context.proof -> term list -> (string * 'a) list -> (string * 'a) list
val add_fixes: string list -> Context.proof -> string list * Context.proof
val invent_fixes: string list -> Context.proof -> string list * Context.proof
val invent_types: sort list -> Context.proof -> (string * sort) list * Context.proof
val export_inst: Context.proof -> Context.proof -> string list * string list
val exportT_inst: Context.proof -> Context.proof -> string list
val export_terms: Context.proof -> Context.proof -> term list -> term list
val exportT_terms: Context.proof -> Context.proof -> term list -> term list
val exportT: Context.proof -> Context.proof -> thm list -> thm list
val export: Context.proof -> Context.proof -> thm list -> thm list
val importT_inst: term list -> Context.proof -> ((indexname * sort) * typ) list * Context.proof
val import_inst: bool -> term list -> Context.proof ->
(((indexname * sort) * typ) list * ((indexname * typ) * term) list) * Context.proof
val importT_terms: term list -> Context.proof -> term list * Context.proof
val import_terms: bool -> term list -> Context.proof -> term list * Context.proof
val importT: thm list -> Context.proof -> (ctyp list * thm list) * Context.proof
val import: bool -> thm list -> Context.proof ->
((ctyp list * cterm list) * thm list) * Context.proof
val tradeT: Context.proof -> (thm list -> thm list) -> thm list -> thm list
val trade: Context.proof -> (thm list -> thm list) -> thm list -> thm list
val focus: cterm -> Context.proof -> (cterm list * cterm) * Context.proof
val warn_extra_tfrees: Context.proof -> Context.proof -> unit
val polymorphic: Context.proof -> term list -> term list
val hidden_polymorphism: term -> typ -> (indexname * sort) list
val add_binds: (indexname * term option) list -> Context.proof -> Context.proof
val expand_binds: Context.proof -> term -> term
end;
structure Variable: VARIABLE =
struct
(** local context data **)
datatype data = Data of
{is_body: bool, (*inner body mode*)
names: Name.context, (*type/term variable names*)
fixes: (string * string) list, (*term fixes -- extern/intern*)
binds: (typ * term) Vartab.table, (*term bindings*)
type_occs: string list Symtab.table, (*type variables -- possibly within term variables*)
constraints:
typ Vartab.table * (*type constraints*)
sort Vartab.table}; (*default sorts*)
fun make_data (is_body, names, fixes, binds, type_occs, constraints) =
Data {is_body = is_body, names = names, fixes = fixes, binds = binds,
type_occs = type_occs, constraints = constraints};
structure Data = ProofDataFun
(
val name = "Pure/variable";
type T = data;
fun init thy =
make_data (false, Name.context, [], Vartab.empty, Symtab.empty, (Vartab.empty, Vartab.empty));
fun print _ _ = ();
);
val _ = Context.add_setup Data.init;
fun map_data f =
Data.map (fn Data {is_body, names, fixes, binds, type_occs, constraints} =>
make_data (f (is_body, names, fixes, binds, type_occs, constraints)));
fun map_names f = map_data (fn (is_body, names, fixes, binds, type_occs, constraints) =>
(is_body, f names, fixes, binds, type_occs, constraints));
fun map_fixes f = map_data (fn (is_body, names, fixes, binds, type_occs, constraints) =>
(is_body, names, f fixes, binds, type_occs, constraints));
fun map_binds f = map_data (fn (is_body, names, fixes, binds, type_occs, constraints) =>
(is_body, names, fixes, f binds, type_occs, constraints));
fun map_type_occs f = map_data (fn (is_body, names, fixes, binds, type_occs, constraints) =>
(is_body, names, fixes, binds, f type_occs, constraints));
fun map_constraints f = map_data (fn (is_body, names, fixes, binds, type_occs, constraints) =>
(is_body, names, fixes, binds, type_occs, f constraints));
fun rep_data ctxt = Data.get ctxt |> (fn Data args => args);
val is_body = #is_body o rep_data;
fun set_body b = map_data (fn (_, names, fixes, binds, type_occs, constraints) =>
(b, names, fixes, binds, type_occs, constraints));
fun restore_body ctxt = set_body (is_body ctxt);
val names_of = #names o rep_data;
val fixes_of = #fixes o rep_data;
val binds_of = #binds o rep_data;
val type_occs_of = #type_occs o rep_data;
val constraints_of = #constraints o rep_data;
val is_declared = Name.is_declared o names_of;
fun is_fixed ctxt x = exists (fn (_, y) => x = y) (fixes_of ctxt);
fun newly_fixed inner outer x = is_fixed inner x andalso not (is_fixed outer x);
(** declarations **)
(* default sorts and types *)
fun default_type ctxt x = Vartab.lookup (#1 (constraints_of ctxt)) (x, ~1);
fun def_type ctxt pattern xi =
let val {binds, constraints = (types, _), ...} = rep_data ctxt in
(case Vartab.lookup types xi of
NONE =>
if pattern then NONE
else Vartab.lookup binds xi |> Option.map (TypeInfer.polymorphicT o #1)
| some => some)
end;
val def_sort = Vartab.lookup o #2 o constraints_of;
(* names *)
val declare_type_names = map_names o
fold_types (fold_atyps (fn TFree (a, _) => Name.declare a | _ => I));
fun declare_names t =
declare_type_names t #>
map_names (fold_aterms (fn Free (x, _) => Name.declare x | _ => I) t);
(* type occurrences *)
val declare_type_occs = map_type_occs o fold_term_types
(fn Free (x, _) => fold_atyps (fn TFree (a, _) => Symtab.insert_list (op =) (a, x) | _ => I)
| _ => fold_atyps (fn TFree (a, _) => Symtab.default (a, []) | _ => I));
(* constraints *)
fun redeclare_skolems ctxt = ctxt |> map_constraints (apfst (fn types =>
let
fun decl (x, x') =
(case default_type ctxt x' of
SOME T => Vartab.update ((x, ~1), T)
| NONE => I);
in fold_rev decl (fixes_of ctxt) types end));
fun declare_constraints t = map_constraints (fn (types, sorts) =>
let
val types' = fold_aterms
(fn Free (x, T) => Vartab.update ((x, ~1), T)
| Var v => Vartab.update v
| _ => I) t types;
val sorts' = fold_types (fold_atyps
(fn TFree (x, S) => Vartab.update ((x, ~1), S)
| TVar v => Vartab.update v
| _ => I)) t sorts;
in (types', sorts') end)
#> declare_type_names t
#> redeclare_skolems;
(* common declarations *)
fun declare_internal t =
declare_names t #>
declare_type_occs t;
fun declare_term t =
declare_internal t #>
declare_constraints t;
fun declare_thm th = fold declare_internal (Thm.full_prop_of th :: Thm.hyps_of th);
fun thm_context th = declare_thm th (Context.init_proof (Thm.theory_of_thm th));
(* renaming term/type frees *)
fun variant_frees ctxt ts frees =
let
val names = names_of (fold declare_names ts ctxt);
val xs = fst (Name.variants (map #1 frees) names);
in xs ~~ map snd frees end;
(** fixes **)
local
fun no_dups [] = ()
| no_dups dups = error ("Duplicate fixed variable(s): " ^ commas_quote dups);
fun new_fixes names' xs xs' =
map_names (K names') #>
map_fixes (fn fixes => (rev (xs ~~ xs') @ fixes)) #>
fold (declare_constraints o Syntax.free) xs' #>
pair xs';
in
fun add_fixes xs ctxt =
let
val _ =
(case filter (can Name.dest_skolem) xs of [] => ()
| bads => error ("Illegal internal Skolem constant(s): " ^ commas_quote bads));
val _ = no_dups (duplicates (op =) xs);
val (ys, zs) = split_list (fixes_of ctxt);
val names = names_of ctxt;
val (xs', names') =
if is_body ctxt then Name.variants xs names |>> map Name.skolem
else (no_dups (xs inter_string ys); no_dups (xs inter_string zs);
(xs, fold Name.declare xs names));
in ctxt |> new_fixes names' xs xs' end;
fun invent_fixes raw_xs ctxt =
let
val names = names_of ctxt;
val xs = map Name.clean raw_xs;
val (xs', names') = Name.variants xs names |>> map Name.skolem;
in ctxt |> new_fixes names' xs xs' end;
end;
fun invent_types Ss ctxt =
let
val tfrees = Name.invents (names_of ctxt) "'a" (length Ss) ~~ Ss;
val ctxt' = fold (declare_constraints o Logic.mk_type o TFree) tfrees ctxt;
in (tfrees, ctxt') end;
(** export -- generalize type/term variables **)
fun export_inst inner outer =
let
val declared_outer = is_declared outer;
val fixes_inner = fixes_of inner;
val fixes_outer = fixes_of outer;
val gen_fixes = map #2 (Library.take (length fixes_inner - length fixes_outer, fixes_inner));
val still_fixed = not o member (op =) gen_fixes;
val gen_fixesT =
Symtab.fold (fn (a, xs) =>
if declared_outer a orelse exists still_fixed xs
then I else cons a) (type_occs_of inner) [];
in (gen_fixesT, gen_fixes) end;
fun exportT_inst inner outer = #1 (export_inst inner outer);
fun exportT_terms inner outer ts =
map (Term.generalize (exportT_inst (fold declare_type_occs ts inner) outer, [])
(fold (Term.fold_types Term.maxidx_typ) ts ~1 + 1)) ts;
fun export_terms inner outer ts =
map (Term.generalize (export_inst (fold declare_type_occs ts inner) outer)
(fold Term.maxidx_term ts ~1 + 1)) ts;
fun gen_export inst inner outer ths =
let
val ths' = map Thm.adjust_maxidx_thm ths;
val inner' = fold (declare_type_occs o Thm.full_prop_of) ths' inner;
in map (Thm.generalize (inst inner' outer) (fold Thm.maxidx_thm ths' ~1 + 1)) ths' end;
val exportT = gen_export (rpair [] oo exportT_inst);
val export = gen_export export_inst;
(** import -- fix schematic type/term variables **)
fun importT_inst ts ctxt =
let
val tvars = rev (fold Term.add_tvars ts []);
val (tfrees, ctxt') = invent_types (map #2 tvars) ctxt;
in (tvars ~~ map TFree tfrees, ctxt') end;
fun import_inst is_open ts ctxt =
let
val ren = if is_open then I else Name.internal;
val (instT, ctxt') = importT_inst ts ctxt;
val vars = map (apsnd (Term.instantiateT instT)) (rev (fold Term.add_vars ts []));
val (xs, ctxt'') = invent_fixes (map (ren o #1 o #1) vars) ctxt';
val inst = vars ~~ map Free (xs ~~ map #2 vars);
in ((instT, inst), ctxt'') end;
fun importT_terms ts ctxt =
let val (instT, ctxt') = importT_inst ts ctxt
in (map (Term.instantiate (instT, [])) ts, ctxt') end;
fun import_terms is_open ts ctxt =
let val (inst, ctxt') = import_inst is_open ts ctxt
in (map (Term.instantiate inst) ts, ctxt') end;
fun importT ths ctxt =
let
val thy = Context.theory_of_proof ctxt;
val certT = Thm.ctyp_of thy;
val (instT, ctxt') = importT_inst (map Thm.full_prop_of ths) ctxt;
val instT' = map (fn (v, T) => (certT (TVar v), certT T)) instT;
val ths' = map (Thm.instantiate (instT', [])) ths;
in ((map #2 instT', ths'), ctxt') end;
fun import is_open ths ctxt =
let
val thy = Context.theory_of_proof ctxt;
val cert = Thm.cterm_of thy;
val certT = Thm.ctyp_of thy;
val ((instT, inst), ctxt') = import_inst is_open (map Thm.full_prop_of ths) ctxt;
val instT' = map (fn (v, T) => (certT (TVar v), certT T)) instT;
val inst' = map (fn (v, t) => (cert (Var v), cert t)) inst;
val ths' = map (Thm.instantiate (instT', inst')) ths;
in (((map #2 instT', map #2 inst'), ths'), ctxt') end;
(* import/export *)
fun gen_trade imp exp ctxt f ths =
let val ((_, ths'), ctxt') = imp ths ctxt
in exp ctxt' ctxt (f ths') end;
val tradeT = gen_trade importT exportT;
val trade = gen_trade (import true) export;
(* focus on outermost parameters *)
fun forall_elim_prop t prop =
Thm.beta_conversion false (Thm.capply (#2 (Thm.dest_comb prop)) t)
|> Thm.cprop_of |> Thm.dest_comb |> #2;
fun focus goal ctxt =
let
val cert = Thm.cterm_of (Thm.theory_of_cterm goal);
val t = Thm.term_of goal;
val ps = Term.variant_frees t (Term.strip_all_vars t); (*as they are printed :-*)
val (xs, Ts) = split_list ps;
val (xs', ctxt') = invent_fixes xs ctxt;
val ps' = ListPair.map (cert o Free) (xs', Ts);
val goal' = fold forall_elim_prop ps' goal;
in ((ps', goal'), ctxt') end;
(** implicit polymorphism **)
(* warn_extra_tfrees *)
fun warn_extra_tfrees ctxt1 ctxt2 =
let
fun occs_typ a = Term.exists_subtype (fn TFree (b, _) => a = b | _ => false);
fun occs_free a x =
(case def_type ctxt1 false (x, ~1) of
SOME T => if occs_typ a T then I else cons (a, x)
| NONE => cons (a, x));
val occs1 = type_occs_of ctxt1;
val occs2 = type_occs_of ctxt2;
val extras = Symtab.fold (fn (a, xs) =>
if Symtab.defined occs1 a then I else fold (occs_free a) xs) occs2 [];
val tfrees = map #1 extras |> sort_distinct string_ord;
val frees = map #2 extras |> sort_distinct string_ord;
in
if null extras then ()
else warning ("Introduced fixed type variable(s): " ^ commas tfrees ^ " in " ^
space_implode " or " (map quote frees))
end;
(* polymorphic terms *)
fun polymorphic ctxt ts =
let
val ctxt' = fold declare_term ts ctxt;
val occs = type_occs_of ctxt;
val occs' = type_occs_of ctxt';
val types = Symtab.fold (fn (a, _) => if Symtab.defined occs a then I else cons a) occs' [];
val idx = fold (Term.fold_types Term.maxidx_typ) ts ~1 + 1;
in map (Term.generalize (types, []) idx) ts end;
fun hidden_polymorphism t T =
let
val tvarsT = Term.add_tvarsT T [];
val extra_tvars = Term.fold_types (Term.fold_atyps
(fn TVar v => if member (op =) tvarsT v then I else insert (op =) v | _ => I)) t [];
in extra_tvars end;
(** term bindings **)
fun add_bind (xi, NONE) = map_binds (Vartab.delete_safe xi)
| add_bind ((x, i), SOME t) =
let
val T = Term.fastype_of t;
val t' =
if null (hidden_polymorphism t T) then t
else Var ((x ^ "_has_extra_type_vars_on_rhs", i), T);
in declare_term t' #> map_binds (Vartab.update ((x, i), (T, t'))) end;
val add_binds = fold add_bind;
fun expand_binds ctxt =
let
val binds = binds_of ctxt;
fun expand (t as Var (xi, T)) =
(case Vartab.lookup binds xi of
SOME u => Envir.expand_atom T u
| NONE => t)
| expand t = t;
in Envir.beta_norm o Term.map_aterms expand end;
end;