src/ZF/AC/HH.ML
author lcp
Thu, 18 May 1995 11:51:23 +0200
changeset 1123 5dfdc1464966
child 1196 d43c1f7a53fe
permissions -rw-r--r--
Krzysztof Grabczewski's (nearly) complete AC proofs

(*  Title: 	ZF/AC/HH.ML
    ID:         $Id$
    Author: 	Krzysztof Gr`abczewski

Some properties of the recursive definition of HH used in the proofs of
  AC17 ==> AC1
  AC1 ==> WO2
  AC15 ==> WO6
*)

open HH;

(* ********************************************************************** *)
(* Lemmas useful in each of the three proofs 				  *)
(* ********************************************************************** *)

goal thy "HH(f,x,a) =  \
\	(lam y:Pow(x). if(f`y : Pow(y)-{0},f`y,{x}))`  \
\	(x - (UN b:a. HH(f,x,b)))";
by (resolve_tac [HH_def RS def_transrec RS trans] 1);
by (asm_full_simp_tac ZF_ss 1);
val HH_def_satisfies_eq = result();

goal thy "HH(f,x,a) : Pow(x)-{0} | HH(f,x,a)={x}";
by (resolve_tac [HH_def_satisfies_eq RS ssubst] 1);
by (asm_full_simp_tac (ZF_ss addsimps [Diff_subset RS PowI]) 1);
by (split_tac [expand_if] 1);
by (fast_tac ZF_cs 1);
val HH_values = result();

goal thy "!!A. B<=A ==> X-(UN a:A. P(a)) = X-(UN a:A-B. P(a))-(UN b:B. P(b))";
by (fast_tac (AC_cs addSIs [equalityI]) 1);
val subset_imp_Diff_eq = result();

goal thy "!!c. [| c:a-b; b<a |] ==> c=b | b<c & c<a";
by (eresolve_tac [ltE] 1);
by (dres_inst_tac [("x","c")] Ord_linear 1);
by (fast_tac (AC_cs addEs [Ord_in_Ord]) 1);
by (fast_tac (AC_cs addSIs [ltI] addIs [Ord_in_Ord]) 1);
val Ord_DiffE = result();

val prems = goal thy "(!!y. y:A ==> P(y) = {x}) ==> x - (UN y:A. P(y)) = x";
by (asm_full_simp_tac (AC_ss addsimps prems) 1);
by (fast_tac (AC_cs addSIs [equalityI] addSDs [prem]
		addSEs [RepFunE, mem_irrefl]) 1);
val Diff_UN_eq_self = result();

goal thy "!!a. x - (UN b:a. HH(f,x,b)) = x - (UN b:a1. HH(f,x,b))  \
\		==> HH(f,x,a) = HH(f,x,a1)";
by (resolve_tac [HH_def_satisfies_eq RS
		(HH_def_satisfies_eq RS sym RSN (3, trans RS trans))] 1);
by (eresolve_tac [subst_context] 1);
val HH_eq = result();

goal thy "!!a. [| HH(f,x,b)={x}; b<a |] ==> HH(f,x,a)={x}";
by (res_inst_tac [("P","b<a")] impE 1 THEN REPEAT (assume_tac 2));
by (eresolve_tac [lt_Ord2 RS trans_induct] 1);
by (resolve_tac [impI] 1);
by (resolve_tac [HH_eq RS trans] 1 THEN (assume_tac 2));
by (resolve_tac [leI RS le_imp_subset RS subset_imp_Diff_eq RS ssubst] 1
	THEN (assume_tac 1));
by (res_inst_tac [("t","%z. z-?X")] subst_context 1);
by (resolve_tac [Diff_UN_eq_self] 1);
by (dresolve_tac [Ord_DiffE] 1 THEN (assume_tac 1));
by (fast_tac (AC_cs addEs [ltE]) 1);
val HH_is_x_gt_too = result();

goal thy "!!a. [| HH(f,x,a) : Pow(x)-{0}; b<a |] ==> HH(f,x,b) : Pow(x)-{0}";
by (resolve_tac [HH_values RS disjE] 1 THEN (assume_tac 1));
by (dresolve_tac [HH_is_x_gt_too] 1 THEN (assume_tac 1));
by (dresolve_tac [subst] 1 THEN (assume_tac 1));
by (fast_tac (AC_cs addSEs [mem_irrefl]) 1);
val HH_subset_x_lt_too = result();

goal thy "!!a. HH(f,x,a) : Pow(x)-{0}   \
\		==> HH(f,x,a) : Pow(x - (UN b:a. HH(f,x,b)))-{0}";
by (dresolve_tac [HH_def_satisfies_eq RS subst] 1);
by (resolve_tac [HH_def_satisfies_eq RS ssubst] 1);
by (asm_full_simp_tac (AC_ss addsimps [Diff_subset RS PowI]) 1);
by (dresolve_tac [expand_if RS iffD1] 1);
by (split_tac [expand_if] 1);
by (fast_tac (AC_cs addSEs [mem_irrefl]) 1);
val HH_subset_x_imp_subset_Diff_UN = result();

goal thy "!!x. [| HH(f,x,v)=HH(f,x,w); HH(f,x,v): Pow(x)-{0}; v:w |] ==> P";
by (forw_inst_tac [("P","%y. y: Pow(x)-{0}")] subst 1 THEN (assume_tac 1));
by (dres_inst_tac [("a","w")] HH_subset_x_imp_subset_Diff_UN 1);
by (dresolve_tac [subst_elem] 1 THEN (assume_tac 1));
by (fast_tac (AC_cs addSIs [singleton_iff RS iffD2, equals0I]) 1);
val HH_eq_arg_lt = result();

goal thy "!!x. [| HH(f,x,v)=HH(f,x,w); HH(f,x,w): Pow(x)-{0};  \
\		Ord(v); Ord(w) |] ==> v=w";
by (res_inst_tac [("j","w")] Ord_linear_lt 1 THEN TRYALL assume_tac);
by (resolve_tac [sym RS (ltD RSN (3, HH_eq_arg_lt))] 2
	THEN REPEAT (assume_tac 2));
by (dresolve_tac [subst_elem] 1 THEN (assume_tac 1));
by (fast_tac (FOL_cs addDs [ltD] addSEs [HH_eq_arg_lt]) 1);
val HH_eq_imp_arg_eq = result();

goalw thy [lepoll_def, inj_def]
	"!!i. [| HH(f, x, i) : Pow(x)-{0}; Ord(i) |] ==> i lepoll Pow(x)-{0}";
by (res_inst_tac [("x","lam j:i. HH(f, x, j)")] exI 1);
by (asm_simp_tac AC_ss 1);
by (fast_tac (FOL_cs addSEs [HH_eq_imp_arg_eq, Ord_in_Ord, HH_subset_x_lt_too]
		addSIs [lam_type, ballI, ltI] addIs [bexI]) 1);
val HH_subset_x_imp_lepoll = result();

goal thy "HH(f, x, Hartog(Pow(x)-{0})) = {x}";
by (resolve_tac [HH_values RS disjE] 1 THEN (assume_tac 2));
by (fast_tac (FOL_cs addSDs [HH_subset_x_imp_lepoll]
		addSIs [Ord_Hartog] addSEs [HartogE]) 1);
val HH_Hartog_is_x = result();

goal thy "HH(f, x, LEAST i. HH(f, x, i) = {x}) = {x}";
by (fast_tac (AC_cs addSIs [Ord_Hartog, HH_Hartog_is_x, LeastI]) 1);
val HH_Least_eq_x = result();

goal thy "!!a. a:(LEAST i. HH(f,x,i)={x}) ==> HH(f,x,a) : Pow(x)-{0}";
by (resolve_tac [HH_values RS disjE] 1 THEN (assume_tac 1));
by (resolve_tac [less_LeastE] 1);
by (eresolve_tac [Ord_Least RSN (2, ltI)] 2);
by (assume_tac 1);
val less_Least_subset_x = result();

(* ********************************************************************** *)
(* Lemmas used in the proofs of AC1 ==> WO2 and AC17 ==> AC1		  *)
(* ********************************************************************** *)

goalw thy [inj_def]
	"(lam a:(LEAST i. HH(f,x,i)={x}). HH(f,x,a)) :  \
\		inj(LEAST i. HH(f,x,i)={x}, Pow(x)-{0})";
by (asm_full_simp_tac AC_ss 1);
by (fast_tac (AC_cs  addSIs [lam_type] addDs [less_Least_subset_x]
		addSEs [HH_eq_imp_arg_eq, Ord_Least RS Ord_in_Ord]) 1);
val lam_Least_HH_inj_Pow = result();

goal thy "!!x. ALL a:(LEAST i. HH(f,x,i)={x}). EX z:x. HH(f,x,a) = {z}  \
\		==> (lam a:(LEAST i. HH(f,x,i)={x}). HH(f,x,a))  \
\			: inj(LEAST i. HH(f,x,i)={x}, {{y}. y:x})";
by (resolve_tac [lam_Least_HH_inj_Pow RS inj_strengthen_type] 1);
by (asm_full_simp_tac AC_ss 1);
by (fast_tac (AC_cs addSEs [RepFun_eqI]) 1);
val lam_Least_HH_inj = result();

goal thy "!!A. [| A={a}; b:A |] ==> b=a";
by (fast_tac AC_cs 1);
val elem_of_sing_eq = result();

goalw thy [surj_def]
	"!!x. [| x - (UN a:A. F(a)) = 0;  \
\		ALL a:A. EX z:x. F(a) = {z} |]  \
\		==> (lam a:A. F(a)) : surj(A, {{y}. y:x})";
by (asm_full_simp_tac (AC_ss addsimps [Diff_eq_0_iff]) 1);
by (resolve_tac [conjI] 1);
by (fast_tac (AC_cs addSIs [lam_type] addSEs [RepFun_eqI]) 1);
by (resolve_tac [ballI] 1);
by (eresolve_tac [RepFunE] 1);
by (dresolve_tac [subsetD] 1 THEN (assume_tac 1));
by (eresolve_tac [UN_E] 1);
by (dresolve_tac [bspec] 1 THEN (assume_tac 1));
by (eresolve_tac [bexE] 1);
by (resolve_tac [bexI] 1 THEN (assume_tac 2));
by (forward_tac [elem_of_sing_eq] 1 THEN (assume_tac 1));
by (fast_tac AC_cs 1);
val lam_surj_sing = result();

goal thy "!!x. y:Pow(x)-{0} ==> x ~= 0";
by (fast_tac (AC_cs addSIs [equals0I, singletonI RS subst_elem]
		addSDs [equals0D]) 1);
val not_emptyI2 = result();

goal thy "!!f. f`(x - (UN j:i. HH(f,x,j))): Pow(x - (UN j:i. HH(f,x,j)))-{0}  \
\	==> HH(f, x, i) : Pow(x) - {0}";
by (resolve_tac [HH_def_satisfies_eq RS ssubst] 1);
by (asm_full_simp_tac (AC_ss addsimps [Diff_subset RS PowI,
		not_emptyI2 RS if_P]) 1);
by (fast_tac AC_cs 1);
val f_subset_imp_HH_subset = result();

val [prem] = goal thy "(!!z. z:Pow(x)-{0} ==> f`z : Pow(z)-{0}) ==>  \
\	x - (UN j: (LEAST i. HH(f,x,i)={x}). HH(f,x,j)) = 0";
by (excluded_middle_tac "?P : {0}" 1);
by (fast_tac AC_cs 2);
by (dresolve_tac [Diff_subset RS PowI RS DiffI RS prem RS
		f_subset_imp_HH_subset] 1);
by (fast_tac (AC_cs addSDs [HH_Least_eq_x RS sym RSN (2, subst_elem)]
		addSEs [mem_irrefl]) 1);
val f_subsets_imp_UN_HH_eq_x = result();

goal thy "HH(f,x,i)=f`(x - (UN j:i. HH(f,x,j))) | HH(f,x,i)={x}";
by (resolve_tac [HH_def_satisfies_eq RS ssubst] 1);
by (asm_full_simp_tac (ZF_ss addsimps [Diff_subset RS PowI]) 1);
by (split_tac [expand_if] 1);
by (fast_tac ZF_cs 1);
val HH_values2 = result();

goal thy "!!f. HH(f,x,i): Pow(x)-{0} ==> HH(f,x,i)=f`(x - (UN j:i. HH(f,x,j)))";
by (resolve_tac [HH_values2 RS disjE] 1 THEN (assume_tac 1));
by (fast_tac (AC_cs addSEs [equalityE, mem_irrefl]
	addSDs [singleton_subsetD]) 1);
val HH_subset_imp_eq = result();

goal thy "!!f. [| f : (PROD X:Pow(x)-{0}. {{z}. z:x});  \
\	a:(LEAST i. HH(f,x,i)={x}) |] ==> EX z:x. HH(f,x,a) = {z}";
by (dresolve_tac [less_Least_subset_x] 1);
by (forward_tac [HH_subset_imp_eq] 1);
by (dresolve_tac [apply_type] 1);
by (resolve_tac [Diff_subset RS PowI RS DiffI] 1);
by (fast_tac (AC_cs addSDs [HH_subset_x_imp_subset_Diff_UN RS not_emptyI2]) 1);
by (fast_tac (AC_cs addSEs [RepFunE] addEs [ssubst]) 1);
val f_sing_imp_HH_sing = result();

goalw thy [bij_def] 
	"!!f. [| x - (UN j: (LEAST i. HH(f,x,i)={x}). HH(f,x,j)) = 0;  \
\	f : (PROD X:Pow(x)-{0}. {{z}. z:x}) |]  \
\	==> (lam a:(LEAST i. HH(f,x,i)={x}). HH(f,x,a))  \
\			: bij(LEAST i. HH(f,x,i)={x}, {{y}. y:x})";
by (fast_tac (AC_cs addSIs [lam_Least_HH_inj, lam_surj_sing,
		f_sing_imp_HH_sing]) 1);
val f_sing_lam_bij = result();

goal thy "!!f. f: (PROD X: Pow(x)-{0}. F(X))  \
\	==> (lam X:Pow(x)-{0}. {f`X}) : (PROD X: Pow(x)-{0}. {{z}. z:F(X)})";
by (fast_tac (FOL_cs addSIs [lam_type, RepFun_eqI, singleton_eq_iff RS iffD2]
	addDs [apply_type]) 1);
val lam_singI = result();

val bij_Least_HH_x = standard (lam_singI RSN (2, 
	[f_sing_lam_bij, lam_sing_bij RS bij_converse_bij] MRS comp_bij));