(* Title: CCL/terms
ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
For terms.thy.
*)
open Term;
val simp_can_defs = [one_def,inl_def,inr_def];
val simp_ncan_defs = [if_def,when_def,split_def,fst_def,snd_def,thd_def];
val simp_defs = simp_can_defs @ simp_ncan_defs;
val ind_can_defs = [zero_def,succ_def,nil_def,cons_def];
val ind_ncan_defs = [ncase_def,nrec_def,lcase_def,lrec_def];
val ind_defs = ind_can_defs @ ind_ncan_defs;
val data_defs = simp_defs @ ind_defs @ [napply_def];
val genrec_defs = [letrec_def,letrec2_def,letrec3_def];
(*** Beta Rules, including strictness ***)
Goalw [let_def] "~ t=bot--> let x be t in f(x) = f(t)";
by (res_inst_tac [("t","t")] term_case 1);
by (ALLGOALS(simp_tac(CCL_ss addsimps [caseBtrue,caseBfalse,caseBpair,caseBlam])));
bind_thm("letB", result() RS mp);
Goalw [let_def] "let x be bot in f(x) = bot";
by (rtac caseBbot 1);
qed "letBabot";
Goalw [let_def] "let x be t in bot = bot";
by (resolve_tac ([caseBbot] RL [term_case]) 1);
by (ALLGOALS(simp_tac(CCL_ss addsimps [caseBtrue,caseBfalse,caseBpair,caseBlam])));
qed "letBbbot";
Goalw [apply_def] "(lam x. b(x)) ` a = b(a)";
by (ALLGOALS(simp_tac(CCL_ss addsimps [caseBtrue,caseBfalse,caseBpair,caseBlam])));
qed "applyB";
Goalw [apply_def] "bot ` a = bot";
by (rtac caseBbot 1);
qed "applyBbot";
Goalw [fix_def] "fix(f) = f(fix(f))";
by (resolve_tac [applyB RS ssubst] 1 THEN rtac refl 1);
qed "fixB";
Goalw [letrec_def]
"letrec g x be h(x,g) in g(a) = h(a,%y. letrec g x be h(x,g) in g(y))";
by (resolve_tac [fixB RS ssubst] 1 THEN
resolve_tac [applyB RS ssubst] 1 THEN rtac refl 1);
qed "letrecB";
val rawBs = caseBs @ [applyB,applyBbot];
fun raw_mk_beta_rl defs s = prove_goalw Term.thy defs s
(fn _ => [stac letrecB 1,
simp_tac (CCL_ss addsimps rawBs) 1]);
fun mk_beta_rl s = raw_mk_beta_rl data_defs s;
fun raw_mk_beta_rl defs s = prove_goalw Term.thy defs s
(fn _ => [simp_tac (CCL_ss addsimps rawBs
setloop (stac letrecB)) 1]);
fun mk_beta_rl s = raw_mk_beta_rl data_defs s;
val ifBtrue = mk_beta_rl "if true then t else u = t";
val ifBfalse = mk_beta_rl "if false then t else u = u";
val ifBbot = mk_beta_rl "if bot then t else u = bot";
val whenBinl = mk_beta_rl "when(inl(a),t,u) = t(a)";
val whenBinr = mk_beta_rl "when(inr(a),t,u) = u(a)";
val whenBbot = mk_beta_rl "when(bot,t,u) = bot";
val splitB = mk_beta_rl "split(<a,b>,h) = h(a,b)";
val splitBbot = mk_beta_rl "split(bot,h) = bot";
val fstB = mk_beta_rl "fst(<a,b>) = a";
val fstBbot = mk_beta_rl "fst(bot) = bot";
val sndB = mk_beta_rl "snd(<a,b>) = b";
val sndBbot = mk_beta_rl "snd(bot) = bot";
val thdB = mk_beta_rl "thd(<a,<b,c>>) = c";
val thdBbot = mk_beta_rl "thd(bot) = bot";
val ncaseBzero = mk_beta_rl "ncase(zero,t,u) = t";
val ncaseBsucc = mk_beta_rl "ncase(succ(n),t,u) = u(n)";
val ncaseBbot = mk_beta_rl "ncase(bot,t,u) = bot";
val nrecBzero = mk_beta_rl "nrec(zero,t,u) = t";
val nrecBsucc = mk_beta_rl "nrec(succ(n),t,u) = u(n,nrec(n,t,u))";
val nrecBbot = mk_beta_rl "nrec(bot,t,u) = bot";
val lcaseBnil = mk_beta_rl "lcase([],t,u) = t";
val lcaseBcons = mk_beta_rl "lcase(x$xs,t,u) = u(x,xs)";
val lcaseBbot = mk_beta_rl "lcase(bot,t,u) = bot";
val lrecBnil = mk_beta_rl "lrec([],t,u) = t";
val lrecBcons = mk_beta_rl "lrec(x$xs,t,u) = u(x,xs,lrec(xs,t,u))";
val lrecBbot = mk_beta_rl "lrec(bot,t,u) = bot";
val letrec2B = raw_mk_beta_rl (data_defs @ [letrec2_def])
"letrec g x y be h(x,y,g) in g(p,q) = \
\ h(p,q,%u v. letrec g x y be h(x,y,g) in g(u,v))";
val letrec3B = raw_mk_beta_rl (data_defs @ [letrec3_def])
"letrec g x y z be h(x,y,z,g) in g(p,q,r) = \
\ h(p,q,r,%u v w. letrec g x y z be h(x,y,z,g) in g(u,v,w))";
val napplyBzero = mk_beta_rl "f^zero`a = a";
val napplyBsucc = mk_beta_rl "f^succ(n)`a = f(f^n`a)";
val termBs = [letB,applyB,applyBbot,splitB,splitBbot,
fstB,fstBbot,sndB,sndBbot,thdB,thdBbot,
ifBtrue,ifBfalse,ifBbot,whenBinl,whenBinr,whenBbot,
ncaseBzero,ncaseBsucc,ncaseBbot,nrecBzero,nrecBsucc,nrecBbot,
lcaseBnil,lcaseBcons,lcaseBbot,lrecBnil,lrecBcons,lrecBbot,
napplyBzero,napplyBsucc];
(*** Constructors are injective ***)
val term_injs = map (mk_inj_rl Term.thy
[applyB,splitB,whenBinl,whenBinr,ncaseBsucc,lcaseBcons])
["(inl(a) = inl(a')) <-> (a=a')",
"(inr(a) = inr(a')) <-> (a=a')",
"(succ(a) = succ(a')) <-> (a=a')",
"(a$b = a'$b') <-> (a=a' & b=b')"];
(*** Constructors are distinct ***)
val term_dstncts = mkall_dstnct_thms Term.thy data_defs (ccl_injs @ term_injs)
[["bot","inl","inr"],["bot","zero","succ"],["bot","nil","op $"]];
(*** Rules for pre-order [= ***)
local
fun mk_thm s = prove_goalw Term.thy data_defs s (fn _ =>
[simp_tac (ccl_ss addsimps (ccl_porews)) 1]);
in
val term_porews = map mk_thm ["inl(a) [= inl(a') <-> a [= a'",
"inr(b) [= inr(b') <-> b [= b'",
"succ(n) [= succ(n') <-> n [= n'",
"x$xs [= x'$xs' <-> x [= x' & xs [= xs'"];
end;
(*** Rewriting and Proving ***)
val term_rews = termBs @ term_injs @ term_dstncts @ ccl_porews @ term_porews;
val term_ss = ccl_ss addsimps term_rews;
val term_cs = ccl_cs addSEs (term_dstncts RL [notE])
addSDs (XH_to_Ds term_injs);