(* Title: HOL/Tools/prop_logic.ML
Author: Tjark Weber
Copyright 2004-2009
Formulas of propositional logic.
*)
signature PROP_LOGIC =
sig
datatype prop_formula =
True
| False
| BoolVar of int (* NOTE: only use indices >= 1 *)
| Not of prop_formula
| Or of prop_formula * prop_formula
| And of prop_formula * prop_formula
val SNot: prop_formula -> prop_formula
val SOr: prop_formula * prop_formula -> prop_formula
val SAnd: prop_formula * prop_formula -> prop_formula
val simplify: prop_formula -> prop_formula (* eliminates True/False and double-negation *)
val indices: prop_formula -> int list (* set of all variable indices *)
val maxidx: prop_formula -> int (* maximal variable index *)
val exists: prop_formula list -> prop_formula (* finite disjunction *)
val all: prop_formula list -> prop_formula (* finite conjunction *)
val dot_product: prop_formula list * prop_formula list -> prop_formula
val is_nnf: prop_formula -> bool (* returns true iff the formula is in negation normal form *)
val is_cnf: prop_formula -> bool (* returns true iff the formula is in conjunctive normal form *)
val nnf: prop_formula -> prop_formula (* negation normal form *)
val cnf: prop_formula -> prop_formula (* conjunctive normal form *)
val defcnf: prop_formula -> prop_formula (* definitional cnf *)
val eval: (int -> bool) -> prop_formula -> bool (* semantics *)
(* propositional representation of HOL terms *)
val prop_formula_of_term: term -> int Termtab.table -> prop_formula * int Termtab.table
(* HOL term representation of propositional formulae *)
val term_of_prop_formula: prop_formula -> term
end;
structure Prop_Logic : PROP_LOGIC =
struct
(* ------------------------------------------------------------------------- *)
(* prop_formula: formulas of propositional logic, built from Boolean *)
(* variables (referred to by index) and True/False using *)
(* not/or/and *)
(* ------------------------------------------------------------------------- *)
datatype prop_formula =
True
| False
| BoolVar of int (* NOTE: only use indices >= 1 *)
| Not of prop_formula
| Or of prop_formula * prop_formula
| And of prop_formula * prop_formula;
(* ------------------------------------------------------------------------- *)
(* The following constructor functions make sure that True and False do not *)
(* occur within any of the other connectives (i.e. Not, Or, And), and *)
(* perform double-negation elimination. *)
(* ------------------------------------------------------------------------- *)
fun SNot True = False
| SNot False = True
| SNot (Not fm) = fm
| SNot fm = Not fm;
fun SOr (True, _) = True
| SOr (_, True) = True
| SOr (False, fm) = fm
| SOr (fm, False) = fm
| SOr (fm1, fm2) = Or (fm1, fm2);
fun SAnd (True, fm) = fm
| SAnd (fm, True) = fm
| SAnd (False, _) = False
| SAnd (_, False) = False
| SAnd (fm1, fm2) = And (fm1, fm2);
(* ------------------------------------------------------------------------- *)
(* simplify: eliminates True/False below other connectives, and double- *)
(* negation *)
(* ------------------------------------------------------------------------- *)
fun simplify (Not fm) = SNot (simplify fm)
| simplify (Or (fm1, fm2)) = SOr (simplify fm1, simplify fm2)
| simplify (And (fm1, fm2)) = SAnd (simplify fm1, simplify fm2)
| simplify fm = fm;
(* ------------------------------------------------------------------------- *)
(* indices: collects all indices of Boolean variables that occur in a *)
(* propositional formula 'fm'; no duplicates *)
(* ------------------------------------------------------------------------- *)
fun indices True = []
| indices False = []
| indices (BoolVar i) = [i]
| indices (Not fm) = indices fm
| indices (Or (fm1, fm2)) = union (op =) (indices fm1) (indices fm2)
| indices (And (fm1, fm2)) = union (op =) (indices fm1) (indices fm2);
(* ------------------------------------------------------------------------- *)
(* maxidx: computes the maximal variable index occurring in a formula of *)
(* propositional logic 'fm'; 0 if 'fm' contains no variable *)
(* ------------------------------------------------------------------------- *)
fun maxidx True = 0
| maxidx False = 0
| maxidx (BoolVar i) = i
| maxidx (Not fm) = maxidx fm
| maxidx (Or (fm1, fm2)) = Int.max (maxidx fm1, maxidx fm2)
| maxidx (And (fm1, fm2)) = Int.max (maxidx fm1, maxidx fm2);
(* ------------------------------------------------------------------------- *)
(* exists: computes the disjunction over a list 'xs' of propositional *)
(* formulas *)
(* ------------------------------------------------------------------------- *)
fun exists xs = Library.foldl SOr (False, xs);
(* ------------------------------------------------------------------------- *)
(* all: computes the conjunction over a list 'xs' of propositional formulas *)
(* ------------------------------------------------------------------------- *)
fun all xs = Library.foldl SAnd (True, xs);
(* ------------------------------------------------------------------------- *)
(* dot_product: ([x1,...,xn], [y1,...,yn]) -> x1*y1+...+xn*yn *)
(* ------------------------------------------------------------------------- *)
fun dot_product (xs, ys) = exists (map SAnd (xs ~~ ys));
(* ------------------------------------------------------------------------- *)
(* is_nnf: returns 'true' iff the formula is in negation normal form (i.e., *)
(* only variables may be negated, but not subformulas). *)
(* ------------------------------------------------------------------------- *)
local
fun is_literal (BoolVar _) = true
| is_literal (Not (BoolVar _)) = true
| is_literal _ = false
fun is_conj_disj (Or (fm1, fm2)) = is_conj_disj fm1 andalso is_conj_disj fm2
| is_conj_disj (And (fm1, fm2)) = is_conj_disj fm1 andalso is_conj_disj fm2
| is_conj_disj fm = is_literal fm
in
fun is_nnf True = true
| is_nnf False = true
| is_nnf fm = is_conj_disj fm
end;
(* ------------------------------------------------------------------------- *)
(* is_cnf: returns 'true' iff the formula is in conjunctive normal form *)
(* (i.e., a conjunction of disjunctions of literals). 'is_cnf' *)
(* implies 'is_nnf'. *)
(* ------------------------------------------------------------------------- *)
local
fun is_literal (BoolVar _) = true
| is_literal (Not (BoolVar _)) = true
| is_literal _ = false
fun is_disj (Or (fm1, fm2)) = is_disj fm1 andalso is_disj fm2
| is_disj fm = is_literal fm
fun is_conj (And (fm1, fm2)) = is_conj fm1 andalso is_conj fm2
| is_conj fm = is_disj fm
in
fun is_cnf True = true
| is_cnf False = true
| is_cnf fm = is_conj fm
end;
(* ------------------------------------------------------------------------- *)
(* nnf: computes the negation normal form of a formula 'fm' of propositional *)
(* logic (i.e., only variables may be negated, but not subformulas). *)
(* Simplification (cf. 'simplify') is performed as well. Not *)
(* surprisingly, 'is_nnf o nnf' always returns 'true'. 'nnf fm' returns *)
(* 'fm' if (and only if) 'is_nnf fm' returns 'true'. *)
(* ------------------------------------------------------------------------- *)
fun nnf fm =
let
fun
(* constants *)
nnf_aux True = True
| nnf_aux False = False
(* variables *)
| nnf_aux (BoolVar i) = (BoolVar i)
(* 'or' and 'and' as outermost connectives are left untouched *)
| nnf_aux (Or (fm1, fm2)) = SOr (nnf_aux fm1, nnf_aux fm2)
| nnf_aux (And (fm1, fm2)) = SAnd (nnf_aux fm1, nnf_aux fm2)
(* 'not' + constant *)
| nnf_aux (Not True) = False
| nnf_aux (Not False) = True
(* 'not' + variable *)
| nnf_aux (Not (BoolVar i)) = Not (BoolVar i)
(* pushing 'not' inside of 'or'/'and' using de Morgan's laws *)
| nnf_aux (Not (Or (fm1, fm2))) = SAnd (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
| nnf_aux (Not (And (fm1, fm2))) = SOr (nnf_aux (SNot fm1), nnf_aux (SNot fm2))
(* double-negation elimination *)
| nnf_aux (Not (Not fm)) = nnf_aux fm
in
if is_nnf fm then fm
else nnf_aux fm
end;
(* ------------------------------------------------------------------------- *)
(* cnf: computes the conjunctive normal form (i.e., a conjunction of *)
(* disjunctions of literals) of a formula 'fm' of propositional logic. *)
(* Simplification (cf. 'simplify') is performed as well. The result *)
(* is equivalent to 'fm', but may be exponentially longer. Not *)
(* surprisingly, 'is_cnf o cnf' always returns 'true'. 'cnf fm' returns *)
(* 'fm' if (and only if) 'is_cnf fm' returns 'true'. *)
(* ------------------------------------------------------------------------- *)
fun cnf fm =
let
(* function to push an 'Or' below 'And's, using distributive laws *)
fun cnf_or (And (fm11, fm12), fm2) =
And (cnf_or (fm11, fm2), cnf_or (fm12, fm2))
| cnf_or (fm1, And (fm21, fm22)) =
And (cnf_or (fm1, fm21), cnf_or (fm1, fm22))
(* neither subformula contains 'And' *)
| cnf_or (fm1, fm2) = Or (fm1, fm2)
fun cnf_from_nnf True = True
| cnf_from_nnf False = False
| cnf_from_nnf (BoolVar i) = BoolVar i
(* 'fm' must be a variable since the formula is in NNF *)
| cnf_from_nnf (Not fm) = Not fm
(* 'Or' may need to be pushed below 'And' *)
| cnf_from_nnf (Or (fm1, fm2)) =
cnf_or (cnf_from_nnf fm1, cnf_from_nnf fm2)
(* 'And' as outermost connective is left untouched *)
| cnf_from_nnf (And (fm1, fm2)) =
And (cnf_from_nnf fm1, cnf_from_nnf fm2)
in
if is_cnf fm then fm
else (cnf_from_nnf o nnf) fm
end;
(* ------------------------------------------------------------------------- *)
(* defcnf: computes a definitional conjunctive normal form of a formula 'fm' *)
(* of propositional logic. Simplification (cf. 'simplify') is performed *)
(* as well. 'defcnf' may introduce auxiliary Boolean variables to avoid *)
(* an exponential blowup of the formula. The result is equisatisfiable *)
(* (i.e., satisfiable if and only if 'fm' is satisfiable), but not *)
(* necessarily equivalent to 'fm'. Not surprisingly, 'is_cnf o defcnf' *)
(* always returns 'true'. 'defcnf fm' returns 'fm' if (and only if) *)
(* 'is_cnf fm' returns 'true'. *)
(* ------------------------------------------------------------------------- *)
fun defcnf fm =
if is_cnf fm then fm
else
let
val fm' = nnf fm
(* 'new' specifies the next index that is available to introduce an auxiliary variable *)
val new = Unsynchronized.ref (maxidx fm' + 1)
fun new_idx () = let val idx = !new in new := idx+1; idx end
(* replaces 'And' by an auxiliary variable (and its definition) *)
fun defcnf_or (And x) =
let
val i = new_idx ()
in
(* Note that definitions are in NNF, but not CNF. *)
(BoolVar i, [Or (Not (BoolVar i), And x)])
end
| defcnf_or (Or (fm1, fm2)) =
let
val (fm1', defs1) = defcnf_or fm1
val (fm2', defs2) = defcnf_or fm2
in
(Or (fm1', fm2'), defs1 @ defs2)
end
| defcnf_or fm = (fm, [])
fun defcnf_from_nnf True = True
| defcnf_from_nnf False = False
| defcnf_from_nnf (BoolVar i) = BoolVar i
(* 'fm' must be a variable since the formula is in NNF *)
| defcnf_from_nnf (Not fm) = Not fm
(* 'Or' may need to be pushed below 'And' *)
(* 'Or' of literal and 'And': use distributivity *)
| defcnf_from_nnf (Or (BoolVar i, And (fm1, fm2))) =
And (defcnf_from_nnf (Or (BoolVar i, fm1)),
defcnf_from_nnf (Or (BoolVar i, fm2)))
| defcnf_from_nnf (Or (Not (BoolVar i), And (fm1, fm2))) =
And (defcnf_from_nnf (Or (Not (BoolVar i), fm1)),
defcnf_from_nnf (Or (Not (BoolVar i), fm2)))
| defcnf_from_nnf (Or (And (fm1, fm2), BoolVar i)) =
And (defcnf_from_nnf (Or (fm1, BoolVar i)),
defcnf_from_nnf (Or (fm2, BoolVar i)))
| defcnf_from_nnf (Or (And (fm1, fm2), Not (BoolVar i))) =
And (defcnf_from_nnf (Or (fm1, Not (BoolVar i))),
defcnf_from_nnf (Or (fm2, Not (BoolVar i))))
(* all other cases: turn the formula into a disjunction of literals, *)
(* adding definitions as necessary *)
| defcnf_from_nnf (Or x) =
let
val (fm, defs) = defcnf_or (Or x)
val cnf_defs = map defcnf_from_nnf defs
in
all (fm :: cnf_defs)
end
(* 'And' as outermost connective is left untouched *)
| defcnf_from_nnf (And (fm1, fm2)) =
And (defcnf_from_nnf fm1, defcnf_from_nnf fm2)
in
defcnf_from_nnf fm'
end;
(* ------------------------------------------------------------------------- *)
(* eval: given an assignment 'a' of Boolean values to variable indices, the *)
(* truth value of a propositional formula 'fm' is computed *)
(* ------------------------------------------------------------------------- *)
fun eval _ True = true
| eval _ False = false
| eval a (BoolVar i) = (a i)
| eval a (Not fm) = not (eval a fm)
| eval a (Or (fm1, fm2)) = (eval a fm1) orelse (eval a fm2)
| eval a (And (fm1, fm2)) = (eval a fm1) andalso (eval a fm2);
(* ------------------------------------------------------------------------- *)
(* prop_formula_of_term: returns the propositional structure of a HOL term, *)
(* with subterms replaced by Boolean variables. Also returns a table *)
(* of terms and corresponding variables that extends the table that was *)
(* given as an argument. Usually, you'll just want to use *)
(* 'Termtab.empty' as value for 'table'. *)
(* ------------------------------------------------------------------------- *)
(* Note: The implementation is somewhat optimized; the next index to be used *)
(* is computed only when it is actually needed. However, when *)
(* 'prop_formula_of_term' is invoked many times, it might be more *)
(* efficient to pass and return this value as an additional parameter, *)
(* so that it does not have to be recomputed (by folding over the *)
(* table) for each invocation. *)
fun prop_formula_of_term t table =
let
val next_idx_is_valid = Unsynchronized.ref false
val next_idx = Unsynchronized.ref 0
fun get_next_idx () =
if !next_idx_is_valid then
Unsynchronized.inc next_idx
else (
next_idx := Termtab.fold (Integer.max o snd) table 0;
next_idx_is_valid := true;
Unsynchronized.inc next_idx
)
fun aux (Const (\<^const_name>\<open>True\<close>, _)) table = (True, table)
| aux (Const (\<^const_name>\<open>False\<close>, _)) table = (False, table)
| aux (Const (\<^const_name>\<open>Not\<close>, _) $ x) table = apfst Not (aux x table)
| aux (Const (\<^const_name>\<open>HOL.disj\<close>, _) $ x $ y) table =
let
val (fm1, table1) = aux x table
val (fm2, table2) = aux y table1
in
(Or (fm1, fm2), table2)
end
| aux (Const (\<^const_name>\<open>HOL.conj\<close>, _) $ x $ y) table =
let
val (fm1, table1) = aux x table
val (fm2, table2) = aux y table1
in
(And (fm1, fm2), table2)
end
| aux x table =
(case Termtab.lookup table x of
SOME i => (BoolVar i, table)
| NONE =>
let
val i = get_next_idx ()
in
(BoolVar i, Termtab.update (x, i) table)
end)
in
aux t table
end;
(* ------------------------------------------------------------------------- *)
(* term_of_prop_formula: returns a HOL term that corresponds to a *)
(* propositional formula, with Boolean variables replaced by Free's *)
(* ------------------------------------------------------------------------- *)
(* Note: A more generic implementation should take another argument of type *)
(* Term.term Inttab.table (or so) that specifies HOL terms for some *)
(* Boolean variables in the formula, similar to 'prop_formula_of_term' *)
(* (but the other way round). *)
fun term_of_prop_formula True = \<^term>\<open>True\<close>
| term_of_prop_formula False = \<^term>\<open>False\<close>
| term_of_prop_formula (BoolVar i) = Free ("v" ^ string_of_int i, HOLogic.boolT)
| term_of_prop_formula (Not fm) = HOLogic.mk_not (term_of_prop_formula fm)
| term_of_prop_formula (Or (fm1, fm2)) =
HOLogic.mk_disj (term_of_prop_formula fm1, term_of_prop_formula fm2)
| term_of_prop_formula (And (fm1, fm2)) =
HOLogic.mk_conj (term_of_prop_formula fm1, term_of_prop_formula fm2);
end;