(* Title: Redex.ML
ID: $Id$
Author: Ole Rasmussen
Copyright 1995 University of Cambridge
Logic Image: ZF
*)
Addsimps redexes.intrs;
fun rotate n i = EVERY(replicate n (etac revcut_rl i));
(* ------------------------------------------------------------------------- *)
(* Specialisation of comp-rules *)
(* ------------------------------------------------------------------------- *)
val compD1 = Scomp.dom_subset RS subsetD RS SigmaD1;
val compD2 = Scomp.dom_subset RS subsetD RS SigmaD2;
val regD = Sreg.dom_subset RS subsetD;
(* ------------------------------------------------------------------------- *)
(* Equality rules for union *)
(* ------------------------------------------------------------------------- *)
Goal "n \\<in> nat==>Var(n) un Var(n)=Var(n)";
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
qed "union_Var";
Goal "[|u \\<in> redexes; v \\<in> redexes|]==>Fun(u) un Fun(v)=Fun(u un v)";
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
qed "union_Fun";
Goal "[|b1 \\<in> bool; b2 \\<in> bool; u1 \\<in> redexes; v1 \\<in> redexes; u2 \\<in> redexes; v2 \\<in> redexes|]==> \
\ App(b1,u1,v1) un App(b2,u2,v2)=App(b1 or b2,u1 un u2,v1 un v2)";
by (asm_simp_tac (simpset() addsimps [union_def]) 1);
qed "union_App";
Addsimps (Ssub.intrs@bool_typechecks@
Sreg.intrs@Scomp.intrs@
[or_1 RSN (3,or_commute RS trans),
or_0 RSN (3,or_commute RS trans),
union_App,union_Fun,union_Var,compD2,compD1,regD]);
AddIs Scomp.intrs;
AddSEs [Sreg.mk_cases "regular(App(b,f,a))",
Sreg.mk_cases "regular(Fun(b))",
Sreg.mk_cases "regular(Var(b))",
Scomp.mk_cases "Fun(u) ~ Fun(t)",
Scomp.mk_cases "u ~ Fun(t)",
Scomp.mk_cases "u ~ Var(n)",
Scomp.mk_cases "u ~ App(b,t,a)",
Scomp.mk_cases "Fun(t) ~ v",
Scomp.mk_cases "App(b,f,a) ~ v",
Scomp.mk_cases "Var(n) ~ u"];
(* ------------------------------------------------------------------------- *)
(* comp proofs *)
(* ------------------------------------------------------------------------- *)
Goal "u \\<in> redexes ==> u ~ u";
by (etac redexes.induct 1);
by (ALLGOALS Fast_tac);
qed "comp_refl";
Goal "u ~ v ==> v ~ u";
by (etac Scomp.induct 1);
by (ALLGOALS Fast_tac);
qed "comp_sym";
Goal "u ~ v <-> v ~ u";
by (fast_tac (claset() addIs [comp_sym]) 1);
qed "comp_sym_iff";
Goal "u ~ v ==> \\<forall>w. v ~ w-->u ~ w";
by (etac Scomp.induct 1);
by (ALLGOALS Fast_tac);
qed_spec_mp "comp_trans";
(* ------------------------------------------------------------------------- *)
(* union proofs *)
(* ------------------------------------------------------------------------- *)
Goal "u ~ v ==> u <== (u un v)";
by (etac Scomp.induct 1);
by (etac boolE 3);
by (ALLGOALS Asm_simp_tac);
qed "union_l";
Goal "u ~ v ==> v <== (u un v)";
by (etac Scomp.induct 1);
by (eres_inst_tac [("c","b2")] boolE 3);
by (ALLGOALS Asm_simp_tac);
qed "union_r";
Goal "u ~ v ==> u un v = v un u";
by (etac Scomp.induct 1);
by (ALLGOALS(asm_simp_tac (simpset() addsimps [or_commute])));
qed "union_sym";
(* ------------------------------------------------------------------------- *)
(* regular proofs *)
(* ------------------------------------------------------------------------- *)
Goal "u ~ v ==> regular(u)-->regular(v)-->regular(u un v)";
by (etac Scomp.induct 1);
by Auto_tac;
by (dres_inst_tac [("psi", "regular(Fun(?u) un ?v)")] asm_rl 1);
by (Asm_full_simp_tac 1);
qed_spec_mp "union_preserve_regular";