(* Title: Pure/zterm.ML
Author: Makarius
Tight representation of types / terms / proof terms, notably for proof recording.
*)
(*** global ***)
(* types and terms *)
datatype ztyp =
ZTVar of indexname * sort (*free: index ~1*)
| ZFun of ztyp * ztyp
| ZProp
| ZType0 of string (*type constant*)
| ZType1 of string * ztyp (*type constructor: 1 argument*)
| ZType of string * ztyp list (*type constructor: >= 2 arguments*)
datatype zterm =
ZVar of indexname * ztyp (*free: index ~1*)
| ZBound of int
| ZConst0 of string (*monomorphic constant*)
| ZConst1 of string * ztyp (*polymorphic constant: 1 type argument*)
| ZConst of string * ztyp list (*polymorphic constant: >= 2 type arguments*)
| ZAbs of string * ztyp * zterm
| ZApp of zterm * zterm
| ZClass of ztyp * class (*OFCLASS proposition*)
structure ZTerm =
struct
(* fold *)
fun fold_tvars f (ZTVar v) = f v
| fold_tvars f (ZFun (T, U)) = fold_tvars f T #> fold_tvars f U
| fold_tvars f (ZType1 (_, T)) = fold_tvars f T
| fold_tvars f (ZType (_, Ts)) = fold (fold_tvars f) Ts
| fold_tvars _ _ = I;
fun fold_aterms f (ZApp (t, u)) = fold_aterms f t #> fold_aterms f u
| fold_aterms f (ZAbs (_, _, t)) = fold_aterms f t
| fold_aterms f a = f a;
fun fold_types f (ZVar (_, T)) = f T
| fold_types f (ZConst1 (_, T)) = f T
| fold_types f (ZConst (_, As)) = fold f As
| fold_types f (ZAbs (_, T, b)) = f T #> fold_types f b
| fold_types f (ZApp (t, u)) = fold_types f t #> fold_types f u
| fold_types f (ZClass (T, _)) = f T
| fold_types _ _ = I;
(* type ordering *)
local
fun cons_nr (ZTVar _) = 0
| cons_nr (ZFun _) = 1
| cons_nr ZProp = 2
| cons_nr (ZType0 _) = 3
| cons_nr (ZType1 _) = 4
| cons_nr (ZType _) = 5;
val fast_indexname_ord = Term_Ord.fast_indexname_ord;
val sort_ord = Term_Ord.sort_ord;
in
fun ztyp_ord TU =
if pointer_eq TU then EQUAL
else
(case TU of
(ZTVar (a, A), ZTVar (b, B)) =>
(case fast_indexname_ord (a, b) of EQUAL => sort_ord (A, B) | ord => ord)
| (ZFun (T, T'), ZFun (U, U')) =>
(case ztyp_ord (T, U) of EQUAL => ztyp_ord (T', U') | ord => ord)
| (ZProp, ZProp) => EQUAL
| (ZType0 a, ZType0 b) => fast_string_ord (a, b)
| (ZType1 (a, T), ZType1 (b, U)) =>
(case fast_string_ord (a, b) of EQUAL => ztyp_ord (T, U) | ord => ord)
| (ZType (a, Ts), ZType (b, Us)) =>
(case fast_string_ord (a, b) of EQUAL => dict_ord ztyp_ord (Ts, Us) | ord => ord)
| (T, U) => int_ord (cons_nr T, cons_nr U));
end;
(* term ordering and alpha-conversion *)
local
fun cons_nr (ZVar _) = 0
| cons_nr (ZBound _) = 1
| cons_nr (ZConst0 _) = 2
| cons_nr (ZConst1 _) = 3
| cons_nr (ZConst _) = 4
| cons_nr (ZAbs _) = 5
| cons_nr (ZApp _) = 6
| cons_nr (ZClass _) = 7;
fun struct_ord tu =
if pointer_eq tu then EQUAL
else
(case tu of
(ZAbs (_, _, t), ZAbs (_, _, u)) => struct_ord (t, u)
| (ZApp (t1, t2), ZApp (u1, u2)) =>
(case struct_ord (t1, u1) of EQUAL => struct_ord (t2, u2) | ord => ord)
| (t, u) => int_ord (cons_nr t, cons_nr u));
fun atoms_ord tu =
if pointer_eq tu then EQUAL
else
(case tu of
(ZAbs (_, _, t), ZAbs (_, _, u)) => atoms_ord (t, u)
| (ZApp (t1, t2), ZApp (u1, u2)) =>
(case atoms_ord (t1, u1) of EQUAL => atoms_ord (t2, u2) | ord => ord)
| (ZConst0 a, ZConst0 b) => fast_string_ord (a, b)
| (ZConst1 (a, _), ZConst1 (b, _)) => fast_string_ord (a, b)
| (ZConst (a, _), ZConst (b, _)) => fast_string_ord (a, b)
| (ZVar (xi, _), ZVar (yj, _)) => Term_Ord.fast_indexname_ord (xi, yj)
| (ZBound i, ZBound j) => int_ord (i, j)
| (ZClass (_, a), ZClass (_, b)) => fast_string_ord (a, b)
| _ => EQUAL);
fun types_ord tu =
if pointer_eq tu then EQUAL
else
(case tu of
(ZAbs (_, T, t), ZAbs (_, U, u)) =>
(case ztyp_ord (T, U) of EQUAL => types_ord (t, u) | ord => ord)
| (ZApp (t1, t2), ZApp (u1, u2)) =>
(case types_ord (t1, u1) of EQUAL => types_ord (t2, u2) | ord => ord)
| (ZConst1 (_, T), ZConst1 (_, U)) => ztyp_ord (T, U)
| (ZConst (_, Ts), ZConst (_, Us)) => dict_ord ztyp_ord (Ts, Us)
| (ZVar (_, T), ZVar (_, U)) => ztyp_ord (T, U)
| (ZClass (T, _), ZClass (U, _)) => ztyp_ord (T, U)
| _ => EQUAL);
in
val fast_zterm_ord = struct_ord ||| atoms_ord ||| types_ord;
end;
fun aconv_zterm (tm1, tm2) =
pointer_eq (tm1, tm2) orelse
(case (tm1, tm2) of
(ZApp (t1, u1), ZApp (t2, u2)) => aconv_zterm (t1, t2) andalso aconv_zterm (u1, u2)
| (ZAbs (_, T1, t1), ZAbs (_, T2, t2)) => aconv_zterm (t1, t2) andalso T1 = T2
| (a1, a2) => a1 = a2);
end;
(* tables and term items *)
structure ZTypes = Table(type key = ztyp val ord = ZTerm.ztyp_ord);
structure ZTerms = Table(type key = zterm val ord = ZTerm.fast_zterm_ord);
structure ZTVars:
sig
include TERM_ITEMS
val add_tvarsT: ztyp -> set -> set
val add_tvars: zterm -> set -> set
end =
struct
open TVars;
val add_tvarsT = ZTerm.fold_tvars add_set;
val add_tvars = ZTerm.fold_types add_tvarsT;
end;
structure ZVars:
sig
include TERM_ITEMS
val add_vars: zterm -> set -> set
end =
struct
structure Term_Items = Term_Items
(
type key = indexname * ztyp;
val ord = pointer_eq_ord (prod_ord Term_Ord.fast_indexname_ord ZTerm.ztyp_ord);
);
open Term_Items;
val add_vars = ZTerm.fold_aterms (fn ZVar v => add_set v | _ => I);
end;
(* proofs *)
datatype zproof_name =
ZAxiom of string
| ZOracle of string
| ZBox of serial
| ZThm of {theory_name: string, thm_name: Thm_Name.T * Position.T, serial: int};
datatype zproof =
ZDummy (*dummy proof*)
| ZConstp of zproof_name * zterm * ztyp ZTVars.table * zterm ZVars.table
| ZBoundp of int
| ZAbst of string * ztyp * zproof
| ZAbsp of string * zterm * zproof
| ZAppt of zproof * zterm
| ZAppp of zproof * zproof
| ZHyp of zterm
| ZClassp of ztyp * class; (*OFCLASS proof from sorts algebra*)
(*** local ***)
signature ZTERM =
sig
datatype ztyp = datatype ztyp
datatype zterm = datatype zterm
datatype zproof = datatype zproof
exception ZTERM of string * ztyp list * zterm list * zproof list
type zproof_const = zproof_name * zterm * ztyp ZTVars.table * zterm ZVars.table
val fold_tvars: (indexname * sort -> 'a -> 'a) -> ztyp -> 'a -> 'a
val fold_aterms: (zterm -> 'a -> 'a) -> zterm -> 'a -> 'a
val fold_types: (ztyp -> 'a -> 'a) -> zterm -> 'a -> 'a
val ztyp_ord: ztyp ord
val fast_zterm_ord: zterm ord
val aconv_zterm: zterm * zterm -> bool
val ZAbsts: (string * ztyp) list -> zproof -> zproof
val ZAbsps: zterm list -> zproof -> zproof
val ZAppts: zproof * zterm list -> zproof
val ZAppps: zproof * zproof list -> zproof
val incr_bv_same: int -> int -> zterm Same.operation
val incr_proof_bv_same: int -> int -> int -> int -> zproof Same.operation
val incr_bv: int -> int -> zterm -> zterm
val incr_boundvars: int -> zterm -> zterm
val incr_proof_bv: int -> int -> int -> int -> zproof -> zproof
val incr_proof_boundvars: int -> int -> zproof -> zproof
val subst_term_bound_same: zterm -> int -> zterm Same.operation
val subst_proof_bound_same: zterm -> int -> zproof Same.operation
val subst_proof_boundp_same: zproof -> int -> int -> zproof Same.operation
val subst_term_bound: zterm -> zterm -> zterm
val subst_proof_bound: zterm -> zproof -> zproof
val subst_proof_boundp: zproof -> zproof -> zproof
val subst_type_same: (indexname * sort, ztyp) Same.function -> ztyp Same.operation
val subst_term_same:
ztyp Same.operation -> (indexname * ztyp, zterm) Same.function -> zterm Same.operation
exception BAD_INST of ((indexname * ztyp) * zterm) list
val map_proof: {hyps: bool} -> ztyp Same.operation -> zterm Same.operation -> zproof -> zproof
val map_proof_types: {hyps: bool} -> ztyp Same.operation -> zproof -> zproof
val map_class_proof: (ztyp * class, zproof) Same.function -> zproof -> zproof
val ztyp_of: typ -> ztyp
val zterm_cache: theory -> {zterm: term -> zterm, ztyp: typ -> ztyp}
val zterm_of: theory -> term -> zterm
val typ_of_tvar: indexname * sort -> typ
val typ_of: ztyp -> typ
val term_of: theory -> zterm -> term
val beta_norm_term_same: zterm Same.operation
val beta_norm_proof_same: zproof Same.operation
val beta_norm_prooft_same: zproof -> zproof
val beta_norm_term: zterm -> zterm
val beta_norm_proof: zproof -> zproof
val beta_norm_prooft: zproof -> zproof
val norm_type: Type.tyenv -> ztyp -> ztyp
val norm_term: theory -> Envir.env -> zterm -> zterm
val norm_proof: theory -> Envir.env -> term list -> zproof -> zproof
type zbox = serial * (zterm * zproof)
val zbox_ord: zbox ord
type zboxes = zbox Ord_List.T
val union_zboxes: zboxes -> zboxes -> zboxes
val unions_zboxes: zboxes list -> zboxes
val add_box_proof: {unconstrain: bool} -> theory ->
term list -> term -> zproof -> zboxes -> zproof * zboxes
val thm_proof: theory -> Thm_Name.T * Position.T -> term list -> term -> zproof -> zbox * zproof
val axiom_proof: theory -> string -> term -> zproof
val oracle_proof: theory -> string -> term -> zproof
val assume_proof: theory -> term -> zproof
val trivial_proof: theory -> term -> zproof
val implies_intr_proof': zterm -> zproof -> zproof
val implies_intr_proof: theory -> term -> zproof -> zproof
val forall_intr_proof: theory -> typ -> string * term -> zproof -> zproof
val forall_elim_proof: theory -> term -> zproof -> zproof
val of_class_proof: typ * class -> zproof
val reflexive_proof: theory -> typ -> term -> zproof
val symmetric_proof: theory -> typ -> term -> term -> zproof -> zproof
val transitive_proof: theory -> typ -> term -> term -> term -> zproof -> zproof -> zproof
val equal_intr_proof: theory -> term -> term -> zproof -> zproof -> zproof
val equal_elim_proof: theory -> term -> term -> zproof -> zproof -> zproof
val abstract_rule_proof: theory -> typ -> typ -> string * term -> term -> term -> zproof -> zproof
val combination_proof: theory -> typ -> typ -> term -> term -> term -> term ->
zproof -> zproof -> zproof
val generalize_proof: Names.set * Names.set -> int -> zproof -> zproof
val instantiate_proof: theory ->
((indexname * sort) * typ) list * ((indexname * typ) * term) list -> zproof -> zproof
val varifyT_proof: ((string * sort) * (indexname * sort)) list -> zproof -> zproof
val legacy_freezeT_proof: term -> zproof -> zproof
val rotate_proof: theory -> term list -> term -> (string * typ) list ->
term list -> int -> zproof -> zproof
val permute_prems_proof: theory -> term list -> int -> int -> zproof -> zproof
val incr_indexes_proof: int -> zproof -> zproof
val lift_proof: theory -> term -> int -> term list -> zproof -> zproof
val assumption_proof: theory -> Envir.env -> term list -> term -> int -> term list ->
zproof -> zproof
val bicompose_proof: theory -> Envir.env -> int -> bool -> term list -> term list ->
term option -> term list -> int -> int -> term list -> zproof -> zproof -> zproof
type sorts_proof = (class * class -> zproof) * (string * class list list * class -> zproof)
val of_sort_proof: Sorts.algebra -> sorts_proof -> (typ * class -> zproof) ->
typ * sort -> zproof list
val unconstrainT_proof: theory -> sorts_proof -> Logic.unconstrain_context -> zproof -> zproof
end;
structure ZTerm: ZTERM =
struct
datatype ztyp = datatype ztyp;
datatype zterm = datatype zterm;
datatype zproof = datatype zproof;
exception ZTERM of string * ztyp list * zterm list * zproof list;
open ZTerm;
(* derived operations *)
val ZFuns = Library.foldr ZFun;
val ZAbsts = fold_rev (fn (x, T) => fn prf => ZAbst (x, T, prf));
val ZAbsps = fold_rev (fn t => fn prf => ZAbsp ("H", t, prf));
val ZAppts = Library.foldl ZAppt;
val ZAppps = Library.foldl ZAppp;
fun combound (t, n, k) =
if k > 0 then ZApp (combound (t, n + 1, k - 1), ZBound n) else t;
(* increment bound variables *)
fun incr_bv_same inc =
if inc = 0 then fn _ => Same.same
else
let
fun term lev (ZBound i) =
if i >= lev then ZBound (i + inc) else raise Same.SAME
| term lev (ZAbs (a, T, t)) = ZAbs (a, T, term (lev + 1) t)
| term lev (ZApp (t, u)) =
(ZApp (term lev t, Same.commit (term lev) u)
handle Same.SAME => ZApp (t, term lev u))
| term _ _ = raise Same.SAME;
in term end;
fun incr_proof_bv_same incp inct =
if incp = 0 andalso inct = 0 then fn _ => fn _ => Same.same
else
let
val term = incr_bv_same inct;
fun proof plev _ (ZBoundp i) =
if i >= plev then ZBoundp (i + incp) else raise Same.SAME
| proof plev tlev (ZAbsp (a, t, p)) =
(ZAbsp (a, term tlev t, Same.commit (proof (plev + 1) tlev) p)
handle Same.SAME => ZAbsp (a, t, proof (plev + 1) tlev p))
| proof plev tlev (ZAbst (a, T, p)) = ZAbst (a, T, proof plev (tlev + 1) p)
| proof plev tlev (ZAppp (p, q)) =
(ZAppp (proof plev tlev p, Same.commit (proof plev tlev) q)
handle Same.SAME => ZAppp (p, proof plev tlev q))
| proof plev tlev (ZAppt (p, t)) =
(ZAppt (proof plev tlev p, Same.commit (term tlev) t)
handle Same.SAME => ZAppt (p, term tlev t))
| proof _ _ _ = raise Same.SAME;
in proof end;
fun incr_bv inc lev = Same.commit (incr_bv_same inc lev);
fun incr_boundvars inc = incr_bv inc 0;
fun incr_proof_bv incp inct plev tlev = Same.commit (incr_proof_bv_same incp inct plev tlev);
fun incr_proof_boundvars incp inct = incr_proof_bv incp inct 0 0;
(* substitution of bound variables *)
fun subst_term_bound_same arg =
let
fun term lev (ZBound i) =
if i < lev then raise Same.SAME (*var is locally bound*)
else if i = lev then incr_boundvars lev arg
else ZBound (i - 1) (*loose: change it*)
| term lev (ZAbs (a, T, t)) = ZAbs (a, T, term (lev + 1) t)
| term lev (ZApp (t, u)) =
(ZApp (term lev t, Same.commit (term lev) u)
handle Same.SAME => ZApp (t, term lev u))
| term _ _ = raise Same.SAME;
in term end;
fun subst_proof_bound_same arg =
let
val term = subst_term_bound_same arg;
fun proof lev (ZAbsp (a, t, p)) =
(ZAbsp (a, term lev t, Same.commit (proof lev) p)
handle Same.SAME => ZAbsp (a, t, proof lev p))
| proof lev (ZAbst (a, T, p)) = ZAbst (a, T, proof (lev + 1) p)
| proof lev (ZAppp (p, q)) =
(ZAppp (proof lev p, Same.commit (proof lev) q)
handle Same.SAME => ZAppp (p, proof lev q))
| proof lev (ZAppt (p, t)) =
(ZAppt (proof lev p, Same.commit (term lev) t)
handle Same.SAME => ZAppt (p, term lev t))
| proof _ _ = raise Same.SAME;
in proof end;
fun subst_proof_boundp_same arg =
let
fun proof plev tlev (ZBoundp i) =
if i < plev then raise Same.SAME (*var is locally bound*)
else if i = plev then incr_proof_boundvars plev tlev arg
else ZBoundp (i - 1) (*loose: change it*)
| proof plev tlev (ZAbsp (a, t, p)) = ZAbsp (a, t, proof (plev + 1) tlev p)
| proof plev tlev (ZAbst (a, T, p)) = ZAbst (a, T, proof plev (tlev + 1) p)
| proof plev tlev (ZAppp (p, q)) =
(ZAppp (proof plev tlev p, Same.commit (proof plev tlev) q)
handle Same.SAME => ZAppp (p, proof plev tlev q))
| proof plev tlev (ZAppt (p, t)) = ZAppt (proof plev tlev p, t)
| proof _ _ _ = raise Same.SAME;
in proof end;
fun subst_term_bound arg body = Same.commit (subst_term_bound_same arg 0) body;
fun subst_proof_bound arg body = Same.commit (subst_proof_bound_same arg 0) body;
fun subst_proof_boundp arg body = Same.commit (subst_proof_boundp_same arg 0 0) body;
(* substitution of free or schematic variables *)
fun subst_type_same tvar =
let
fun typ (ZTVar x) = tvar x
| typ (ZFun (T, U)) =
(ZFun (typ T, Same.commit typ U)
handle Same.SAME => ZFun (T, typ U))
| typ ZProp = raise Same.SAME
| typ (ZType0 _) = raise Same.SAME
| typ (ZType1 (a, T)) = ZType1 (a, typ T)
| typ (ZType (a, Ts)) = ZType (a, Same.map typ Ts);
in typ end;
fun subst_term_same typ var =
let
fun term (ZVar (x, T)) =
let val (T', same) = Same.commit_id typ T in
(case Same.catch var (x, T') of
NONE => if same then raise Same.SAME else ZVar (x, T')
| SOME t' => t')
end
| term (ZBound _) = raise Same.SAME
| term (ZConst0 _) = raise Same.SAME
| term (ZConst1 (a, T)) = ZConst1 (a, typ T)
| term (ZConst (a, Ts)) = ZConst (a, Same.map typ Ts)
| term (ZAbs (a, T, t)) =
(ZAbs (a, typ T, Same.commit term t)
handle Same.SAME => ZAbs (a, T, term t))
| term (ZApp (t, u)) =
(ZApp (term t, Same.commit term u)
handle Same.SAME => ZApp (t, term u))
| term (ZClass (T, c)) = ZClass (typ T, c);
in term end;
fun instantiate_type_same instT =
if ZTVars.is_empty instT then Same.same
else ZTypes.unsynchronized_cache (subst_type_same (Same.function (ZTVars.lookup instT)));
fun instantiate_term_same typ inst =
subst_term_same typ (Same.function (ZVars.lookup inst));
(* fold types/terms within proof *)
fun fold_proof {hyps} typ term =
let
fun proof ZDummy = I
| proof (ZConstp (_, _, instT, inst)) =
ZTVars.fold (typ o #2) instT #> ZVars.fold (term o #2) inst
| proof (ZBoundp _) = I
| proof (ZAbst (_, T, p)) = typ T #> proof p
| proof (ZAbsp (_, t, p)) = term t #> proof p
| proof (ZAppt (p, t)) = proof p #> term t
| proof (ZAppp (p, q)) = proof p #> proof q
| proof (ZHyp h) = hyps ? term h
| proof (ZClassp (T, _)) = hyps ? typ T;
in proof end;
fun fold_proof_types hyps typ =
fold_proof hyps typ (fold_types typ);
(* map types/terms within proof *)
exception BAD_INST of ((indexname * ztyp) * zterm) list
fun make_inst inst =
ZVars.build (inst |> fold (ZVars.insert (op aconv_zterm)))
handle ZVars.DUP _ => raise BAD_INST inst;
fun map_insts_same typ term (instT, inst) =
let
val changed = Unsynchronized.ref false;
fun apply f x =
(case Same.catch f x of
NONE => NONE
| some => (changed := true; some));
val instT' =
(instT, instT) |-> ZTVars.fold (fn (v, T) =>
(case apply typ T of
NONE => I
| SOME T' => ZTVars.update (v, T')));
val vars' =
(inst, ZVars.empty) |-> ZVars.fold (fn ((v, T), _) =>
(case apply typ T of
NONE => I
| SOME T' => ZVars.add ((v, T), (v, T'))));
val inst' =
if ZVars.is_empty vars' then
(inst, inst) |-> ZVars.fold (fn (v, t) =>
(case apply term t of
NONE => I
| SOME t' => ZVars.update (v, t')))
else
build (inst |> ZVars.fold_rev (fn (v, t) =>
cons (the_default v (ZVars.lookup vars' v), the_default t (apply term t))))
|> make_inst;
in if ! changed then (instT', inst') else raise Same.SAME end;
fun map_proof_same {hyps} typ term =
let
fun proof ZDummy = raise Same.SAME
| proof (ZConstp (a, A, instT, inst)) =
let val (instT', inst') = map_insts_same typ term (instT, inst)
in ZConstp (a, A, instT', inst') end
| proof (ZBoundp _) = raise Same.SAME
| proof (ZAbst (a, T, p)) =
(ZAbst (a, typ T, Same.commit proof p)
handle Same.SAME => ZAbst (a, T, proof p))
| proof (ZAbsp (a, t, p)) =
(ZAbsp (a, term t, Same.commit proof p)
handle Same.SAME => ZAbsp (a, t, proof p))
| proof (ZAppt (p, t)) =
(ZAppt (proof p, Same.commit term t)
handle Same.SAME => ZAppt (p, term t))
| proof (ZAppp (p, q)) =
(ZAppp (proof p, Same.commit proof q)
handle Same.SAME => ZAppp (p, proof q))
| proof (ZHyp h) = if hyps then ZHyp (term h) else raise Same.SAME
| proof (ZClassp (T, c)) = if hyps then ZClassp (typ T, c) else raise Same.SAME;
in proof end;
fun map_proof hyps typ term = Same.commit (map_proof_same hyps typ term);
fun map_proof_types hyps typ = map_proof hyps typ (subst_term_same typ Same.same);
(* map class proofs *)
fun map_class_proof class =
let
fun proof (ZClassp C) = class C
| proof (ZAbst (a, T, p)) = ZAbst (a, T, proof p)
| proof (ZAbsp (a, t, p)) = ZAbsp (a, t, proof p)
| proof (ZAppt (p, t)) = ZAppt (proof p, t)
| proof (ZAppp (p, q)) =
(ZAppp (proof p, Same.commit proof q)
handle Same.SAME => ZAppp (p, proof q))
| proof _ = raise Same.SAME;
in Same.commit proof end;
(* convert ztyp / zterm vs. regular typ / term *)
fun ztyp_of (TFree (a, S)) = ZTVar ((a, ~1), S)
| ztyp_of (TVar v) = ZTVar v
| ztyp_of (Type ("fun", [T, U])) = ZFun (ztyp_of T, ztyp_of U)
| ztyp_of (Type ("prop", [])) = ZProp
| ztyp_of (Type (c, [])) = ZType0 c
| ztyp_of (Type (c, [T])) = ZType1 (c, ztyp_of T)
| ztyp_of (Type (c, ts)) = ZType (c, map ztyp_of ts);
fun ztyp_cache () = Typtab.unsynchronized_cache ztyp_of;
fun zterm_cache thy =
let
val typargs = Consts.typargs (Sign.consts_of thy);
val ztyp = ztyp_cache ();
fun zterm (Free (x, T)) = ZVar ((x, ~1), ztyp T)
| zterm (Var (xi, T)) = ZVar (xi, ztyp T)
| zterm (Bound i) = ZBound i
| zterm (Const (c, T)) =
(case typargs (c, T) of
[] => ZConst0 c
| [T] => ZConst1 (c, ztyp T)
| Ts => ZConst (c, map ztyp Ts))
| zterm (Abs (a, T, b)) = ZAbs (a, ztyp T, zterm b)
| zterm ((t as Const (c, _)) $ (u as Const ("Pure.type", _))) =
if String.isSuffix Logic.class_suffix c then
ZClass (ztyp (Logic.dest_type u), Logic.class_of_const c)
else ZApp (zterm t, zterm u)
| zterm (t $ u) = ZApp (zterm t, zterm u);
in {ztyp = ztyp, zterm = zterm} end;
val zterm_of = #zterm o zterm_cache;
fun typ_of_tvar ((a, ~1), S) = TFree (a, S)
| typ_of_tvar v = TVar v;
fun typ_of (ZTVar v) = typ_of_tvar v
| typ_of (ZFun (T, U)) = typ_of T --> typ_of U
| typ_of ZProp = propT
| typ_of (ZType0 c) = Type (c, [])
| typ_of (ZType1 (c, T)) = Type (c, [typ_of T])
| typ_of (ZType (c, Ts)) = Type (c, map typ_of Ts);
fun typ_cache () = ZTypes.unsynchronized_cache typ_of;
fun term_of thy =
let
val instance = Consts.instance (Sign.consts_of thy);
fun const (c, Ts) = Const (c, instance (c, Ts));
fun term (ZVar ((x, ~1), T)) = Free (x, typ_of T)
| term (ZVar (xi, T)) = Var (xi, typ_of T)
| term (ZBound i) = Bound i
| term (ZConst0 c) = const (c, [])
| term (ZConst1 (c, T)) = const (c, [typ_of T])
| term (ZConst (c, Ts)) = const (c, map typ_of Ts)
| term (ZAbs (a, T, b)) = Abs (a, typ_of T, term b)
| term (ZApp (t, u)) = term t $ term u
| term (ZClass (T, c)) = Logic.mk_of_class (typ_of T, c);
in term end;
(* beta contraction *)
val beta_norm_term_same =
let
fun norm (ZAbs (a, T, t)) = ZAbs (a, T, Same.commit norm t)
| norm (ZApp (ZAbs (_, _, body), t)) = Same.commit norm (subst_term_bound t body)
| norm (ZApp (f, t)) =
((case norm f of
ZAbs (_, _, body) => Same.commit norm (subst_term_bound t body)
| nf => ZApp (nf, Same.commit norm t))
handle Same.SAME => ZApp (f, norm t))
| norm _ = raise Same.SAME;
in norm end;
val beta_norm_prooft_same =
let
val term = beta_norm_term_same;
fun norm (ZAbst (a, T, p)) = ZAbst (a, T, norm p)
| norm (ZAppt (ZAbst (_, _, body), t)) = Same.commit norm (subst_proof_bound t body)
| norm (ZAppt (f, t)) =
((case norm f of
ZAbst (_, _, body) => Same.commit norm (subst_proof_bound t body)
| nf => ZAppt (nf, Same.commit term t))
handle Same.SAME => ZAppt (f, term t))
| norm _ = raise Same.SAME;
in norm end;
val beta_norm_proof_same =
let
val term = beta_norm_term_same;
fun norm (ZAbst (a, T, p)) = ZAbst (a, T, norm p)
| norm (ZAbsp (a, t, p)) =
(ZAbsp (a, term t, Same.commit norm p)
handle Same.SAME => ZAbsp (a, t, norm p))
| norm (ZAppt (ZAbst (_, _, body), t)) = Same.commit norm (subst_proof_bound t body)
| norm (ZAppp (ZAbsp (_, _, body), p)) = Same.commit norm (subst_proof_boundp p body)
| norm (ZAppt (f, t)) =
((case norm f of
ZAbst (_, _, body) => Same.commit norm (subst_proof_bound t body)
| nf => ZAppt (nf, Same.commit term t))
handle Same.SAME => ZAppt (f, term t))
| norm (ZAppp (f, p)) =
((case norm f of
ZAbsp (_, _, body) => Same.commit norm (subst_proof_boundp p body)
| nf => ZAppp (nf, Same.commit norm p))
handle Same.SAME => ZAppp (f, norm p))
| norm _ = raise Same.SAME;
in norm end;
val beta_norm_term = Same.commit beta_norm_term_same;
val beta_norm_proof = Same.commit beta_norm_proof_same;
val beta_norm_prooft = Same.commit beta_norm_prooft_same;
(* normalization wrt. environment and beta contraction *)
fun norm_type_same ztyp tyenv =
if Vartab.is_empty tyenv then Same.same
else
let
fun norm (ZTVar v) =
(case Type.lookup tyenv v of
SOME U => Same.commit norm (ztyp U)
| NONE => raise Same.SAME)
| norm (ZFun (T, U)) =
(ZFun (norm T, Same.commit norm U)
handle Same.SAME => ZFun (T, norm U))
| norm ZProp = raise Same.SAME
| norm (ZType0 _) = raise Same.SAME
| norm (ZType1 (a, T)) = ZType1 (a, norm T)
| norm (ZType (a, Ts)) = ZType (a, Same.map norm Ts);
in norm end;
fun norm_term_same {ztyp, zterm, typ} (envir as Envir.Envir {tyenv, tenv, ...}) =
let
val lookup =
if Vartab.is_empty tenv then K NONE
else ZVars.unsynchronized_cache (apsnd typ #> Envir.lookup envir #> Option.map zterm);
val normT = norm_type_same ztyp tyenv;
fun norm (ZVar (xi, T)) =
(case lookup (xi, T) of
SOME u => Same.commit norm u
| NONE => ZVar (xi, normT T))
| norm (ZBound _) = raise Same.SAME
| norm (ZConst0 _) = raise Same.SAME
| norm (ZConst1 (a, T)) = ZConst1 (a, normT T)
| norm (ZConst (a, Ts)) = ZConst (a, Same.map normT Ts)
| norm (ZAbs (a, T, t)) =
(ZAbs (a, normT T, Same.commit norm t)
handle Same.SAME => ZAbs (a, T, norm t))
| norm (ZApp (ZAbs (_, _, body), t)) = Same.commit norm (subst_term_bound t body)
| norm (ZApp (f, t)) =
((case norm f of
ZAbs (_, _, body) => Same.commit norm (subst_term_bound t body)
| nf => ZApp (nf, Same.commit norm t))
handle Same.SAME => ZApp (f, norm t))
| norm _ = raise Same.SAME;
in fn t => if Envir.is_empty envir then beta_norm_term_same t else norm t end;
fun norm_proof_cache (cache as {ztyp, ...}) (envir as Envir.Envir {tyenv, ...}) =
let
val norm_tvar = ZTVar #> Same.commit (norm_type_same ztyp tyenv);
val norm_var = ZVar #> Same.commit (norm_term_same cache envir);
in
fn visible => fn prf =>
if Envir.is_empty envir orelse null visible then beta_norm_prooft prf
else
let
fun add_tvar v tab =
if ZTVars.defined tab v then tab else ZTVars.update (v, norm_tvar v) tab;
val inst_typ =
if Vartab.is_empty tyenv then Same.same
else
ZTVars.build (visible |> (fold o Term.fold_types o Term.fold_atyps)
(fn TVar v => add_tvar v | _ => I))
|> instantiate_type_same;
fun add_var (a, T) tab =
let val v = (a, Same.commit inst_typ (ztyp T))
in if ZVars.defined tab v then tab else ZVars.update (v, norm_var v) tab end;
val inst_term =
ZVars.build (visible |> (fold o Term.fold_aterms) (fn Var v => add_var v | _ => I))
|> instantiate_term_same inst_typ;
val norm_term = Same.compose beta_norm_term_same inst_term;
in beta_norm_prooft (map_proof {hyps = false} inst_typ norm_term prf) end
end;
fun norm_cache thy =
let
val {ztyp, zterm} = zterm_cache thy;
val typ = typ_cache ();
in {ztyp = ztyp, zterm = zterm, typ = typ} end;
fun norm_type tyenv = Same.commit (norm_type_same (ztyp_cache ()) tyenv);
fun norm_term thy envir = Same.commit (norm_term_same (norm_cache thy) envir);
fun norm_proof thy envir = norm_proof_cache (norm_cache thy) envir;
(** proof construction **)
(* constants *)
type zproof_const = zproof_name * zterm * ztyp ZTVars.table * zterm ZVars.table;
fun zproof_const a A : zproof_const =
let
val instT =
ZTVars.build (A |> (fold_types o fold_tvars) (fn v => fn tab =>
if ZTVars.defined tab v then tab else ZTVars.update (v, ZTVar v) tab));
val inst =
ZVars.build (A |> fold_aterms (fn t => fn tab =>
(case t of
ZVar v => if ZVars.defined tab v then tab else ZVars.update (v, t) tab
| _ => tab)));
in (a, A, instT, inst) end;
fun make_const_proof (f, g) (a, A, instT, inst) =
let
val typ = subst_type_same (Same.function (fn ((x, _), _) => try f x));
val term = Same.function (fn ZVar ((x, _), _) => try g x | _ => NONE);
val (instT', inst') = Same.commit (map_insts_same typ term) (instT, inst);
in ZConstp (a, A, instT', inst') end;
(* closed proof boxes *)
type zbox = serial * (zterm * zproof);
val zbox_ord: zbox ord = fn ((i, _), (j, _)) => int_ord (j, i);
type zboxes = zbox Ord_List.T;
val union_zboxes = Ord_List.union zbox_ord;
val unions_zboxes = Ord_List.unions zbox_ord;
val add_zboxes = Ord_List.insert zbox_ord;
local
fun close_prop prems prop =
fold_rev (fn A => fn B => ZApp (ZApp (ZConst0 "Pure.imp", A), B)) prems prop;
fun close_proof prems prf =
let
val m = length prems - 1;
val bounds = ZTerms.build (prems |> fold_index (fn (i, h) => ZTerms.update (h, m - i)));
fun get_bound lev t = ZTerms.lookup bounds t |> Option.map (fn i => ZBoundp (lev + i));
fun proof lev (ZHyp t) =
(case get_bound lev t of
SOME p => p
| NONE => raise ZTERM ("Loose bound in proof term", [], [t], [prf]))
| proof lev (ZClassp C) =
(case get_bound lev (ZClass C) of
SOME p => p
| NONE => raise Same.SAME)
| proof lev (ZAbst (x, T, p)) = ZAbst (x, T, proof lev p)
| proof lev (ZAbsp (x, t, p)) = ZAbsp (x, t, proof (lev + 1) p)
| proof lev (ZAppt (p, t)) = ZAppt (proof lev p, t)
| proof lev (ZAppp (p, q)) =
(ZAppp (proof lev p, Same.commit (proof lev) q)
handle Same.SAME => ZAppp (p, proof lev q))
| proof _ _ = raise Same.SAME;
in ZAbsps prems (Same.commit (proof 0) prf) end;
fun box_proof {unconstrain} zproof_name thy hyps concl prf =
let
val {zterm, ...} = zterm_cache thy;
val present_set_prf =
ZTVars.build ((fold_proof_types {hyps = true} o fold_tvars) ZTVars.add_set prf);
val present_set =
Types.build (Types.add_atyps concl #> fold Types.add_atyps hyps #>
ZTVars.fold (Types.add_set o typ_of_tvar o #1) present_set_prf);
val ucontext as {constraints, outer_constraints, ...} =
Logic.unconstrain_context [] present_set;
val typ_operation = #typ_operation ucontext {strip_sorts = true};
val unconstrain_typ = Same.commit typ_operation;
val unconstrain_ztyp =
ZTypes.unsynchronized_cache (Same.function_eq (op =) (typ_of #> unconstrain_typ #> ztyp_of));
val unconstrain_zterm = zterm o Term.map_types typ_operation;
val unconstrain_proof = Same.commit (map_proof_types {hyps = true} unconstrain_ztyp);
val constrain_instT =
if unconstrain then ZTVars.empty
else
ZTVars.build (present_set |> Types.fold (fn (T, _) =>
let
val ZTVar v = ztyp_of (unconstrain_typ T) and U = ztyp_of T;
val equal = (case U of ZTVar u => u = v | _ => false);
in not equal ? ZTVars.add (v, U) end));
val constrain_proof =
if ZTVars.is_empty constrain_instT then I
else
map_proof_types {hyps = true}
(subst_type_same (Same.function (ZTVars.lookup constrain_instT)));
val hyps' = map unconstrain_zterm hyps;
val prems = map (zterm o #2) constraints @ hyps';
val prop' = beta_norm_term (close_prop prems (unconstrain_zterm concl));
val prf' = beta_norm_prooft (close_proof prems (unconstrain_proof prf));
val i = serial ();
val zbox: zbox = (i, (prop', prf'));
val const = constrain_proof (ZConstp (zproof_const (zproof_name i) prop'));
val args1 =
outer_constraints |> map (fn (T, c) =>
ZClassp (ztyp_of (if unconstrain then unconstrain_typ T else T), c));
val args2 = if unconstrain then map ZHyp hyps' else map (ZHyp o zterm) hyps;
in (zbox, ZAppps (ZAppps (const, args1), args2)) end;
in
fun thm_proof thy thm_name =
let
val thy_name = Context.theory_long_name thy;
fun zproof_name i = ZThm {theory_name = thy_name, thm_name = thm_name, serial = i};
in box_proof {unconstrain = false} zproof_name thy end;
fun add_box_proof unconstrain thy hyps concl prf zboxes =
let
val (zbox, prf') = box_proof unconstrain ZBox thy hyps concl prf;
val zboxes' = add_zboxes zbox zboxes;
in (prf', zboxes') end;
end;
(* basic logic *)
fun axiom_proof thy name A =
ZConstp (zproof_const (ZAxiom name) (zterm_of thy A));
fun oracle_proof thy name A =
ZConstp (zproof_const (ZOracle name) (zterm_of thy A));
fun assume_proof thy A =
ZHyp (zterm_of thy A);
fun trivial_proof thy A =
ZAbsp ("H", zterm_of thy A, ZBoundp 0);
fun implies_intr_proof' h prf =
let
fun proof lev (ZHyp t) = if aconv_zterm (h, t) then ZBoundp lev else raise Same.SAME
| proof lev (ZAbst (x, T, p)) = ZAbst (x, T, proof lev p)
| proof lev (ZAbsp (x, t, p)) = ZAbsp (x, t, proof (lev + 1) p)
| proof lev (ZAppt (p, t)) = ZAppt (proof lev p, t)
| proof lev (ZAppp (p, q)) =
(ZAppp (proof lev p, Same.commit (proof lev) q)
handle Same.SAME => ZAppp (p, proof lev q))
| proof _ _ = raise Same.SAME;
in ZAbsp ("H", h, Same.commit (proof 0) prf) end;
fun implies_intr_proof thy = implies_intr_proof' o zterm_of thy;
fun forall_intr_proof thy T (a, x) prf =
let
val {ztyp, zterm} = zterm_cache thy;
val Z = ztyp T;
val z = zterm x;
fun term i b =
if aconv_zterm (b, z) then ZBound i
else
(case b of
ZAbs (x, T, t) => ZAbs (x, T, term (i + 1) t)
| ZApp (t, u) =>
(ZApp (term i t, Same.commit (term i) u)
handle Same.SAME => ZApp (t, term i u))
| _ => raise Same.SAME);
fun proof i (ZAbst (x, T, prf)) = ZAbst (x, T, proof (i + 1) prf)
| proof i (ZAbsp (x, t, prf)) =
(ZAbsp (x, term i t, Same.commit (proof i) prf)
handle Same.SAME => ZAbsp (x, t, proof i prf))
| proof i (ZAppt (p, t)) =
(ZAppt (proof i p, Same.commit (term i) t)
handle Same.SAME => ZAppt (p, term i t))
| proof i (ZAppp (p, q)) =
(ZAppp (proof i p, Same.commit (proof i) q)
handle Same.SAME => ZAppp (p, proof i q))
| proof _ _ = raise Same.SAME;
in ZAbst (a, Z, Same.commit (proof 0) prf) end;
fun forall_elim_proof thy t p = ZAppt (p, zterm_of thy t);
fun of_class_proof (T, c) = ZClassp (ztyp_of T, c);
(* equality *)
local
val thy0 =
Context.the_global_context ()
|> Sign.add_types_global [(Binding.name "fun", 2, NoSyn), (Binding.name "prop", 0, NoSyn)]
|> Sign.local_path
|> Sign.add_consts
[(Binding.name "all", (Term.aT [] --> propT) --> propT, NoSyn),
(Binding.name "imp", propT --> propT --> propT, NoSyn),
(Binding.name "eq", Term.aT [] --> Term.aT [] --> propT, NoSyn)];
val [reflexive_axiom, symmetric_axiom, transitive_axiom, equal_intr_axiom, equal_elim_axiom,
abstract_rule_axiom, combination_axiom] =
Theory.equality_axioms |> map (fn (b, t) =>
let val ZConstp c = axiom_proof thy0 (Sign.full_name thy0 b) t in c end);
in
val is_reflexive_proof =
fn ZConstp (ZAxiom "Pure.reflexive", _, _, _) => true | _ => false;
fun reflexive_proof thy T t =
let
val {ztyp, zterm} = zterm_cache thy;
val A = ztyp T;
val x = zterm t;
in make_const_proof (fn "'a" => A, fn "x" => x) reflexive_axiom end;
fun symmetric_proof thy T t u prf =
if is_reflexive_proof prf then prf
else
let
val {ztyp, zterm} = zterm_cache thy;
val A = ztyp T;
val x = zterm t;
val y = zterm u;
val ax = make_const_proof (fn "'a" => A, fn "x" => x | "y" => y) symmetric_axiom;
in ZAppp (ax, prf) end;
fun transitive_proof thy T t u v prf1 prf2 =
if is_reflexive_proof prf1 then prf2
else if is_reflexive_proof prf2 then prf1
else
let
val {ztyp, zterm} = zterm_cache thy;
val A = ztyp T;
val x = zterm t;
val y = zterm u;
val z = zterm v;
val ax = make_const_proof (fn "'a" => A, fn "x" => x | "y" => y | "z" => z) transitive_axiom;
in ZAppp (ZAppp (ax, prf1), prf2) end;
fun equal_intr_proof thy t u prf1 prf2 =
let
val {zterm, ...} = zterm_cache thy;
val A = zterm t;
val B = zterm u;
val ax = make_const_proof (undefined, fn "A" => A | "B" => B) equal_intr_axiom;
in ZAppp (ZAppp (ax, prf1), prf2) end;
fun equal_elim_proof thy t u prf1 prf2 =
let
val {zterm, ...} = zterm_cache thy;
val A = zterm t;
val B = zterm u;
val ax = make_const_proof (undefined, fn "A" => A | "B" => B) equal_elim_axiom;
in ZAppp (ZAppp (ax, prf1), prf2) end;
fun abstract_rule_proof thy T U x t u prf =
let
val {ztyp, zterm} = zterm_cache thy;
val A = ztyp T;
val B = ztyp U;
val f = zterm t;
val g = zterm u;
val ax =
make_const_proof (fn "'a" => A | "'b" => B, fn "f" => f | "g" => g)
abstract_rule_axiom;
in ZAppp (ax, forall_intr_proof thy T x prf) end;
fun combination_proof thy T U f g t u prf1 prf2 =
let
val {ztyp, zterm} = zterm_cache thy;
val A = ztyp T;
val B = ztyp U;
val f' = zterm f;
val g' = zterm g;
val x = zterm t;
val y = zterm u;
val ax =
make_const_proof (fn "'a" => A | "'b" => B, fn "f" => f' | "g" => g' | "x" => x | "y" => y)
combination_axiom;
in ZAppp (ZAppp (ax, prf1), prf2) end;
end;
(* substitution *)
fun generalize_proof (tfrees, frees) idx prf =
let
val typ =
if Names.is_empty tfrees then Same.same
else
ZTypes.unsynchronized_cache
(subst_type_same (fn ((a, i), S) =>
if i = ~1 andalso Names.defined tfrees a then ZTVar ((a, idx), S)
else raise Same.SAME));
val term =
subst_term_same typ (fn ((x, i), T) =>
if i = ~1 andalso Names.defined frees x then ZVar ((x, idx), T)
else raise Same.SAME);
in map_proof {hyps = false} typ term prf end;
fun instantiate_proof thy (Ts, ts) prf =
let
val {ztyp, zterm} = zterm_cache thy;
val instT = ZTVars.build (Ts |> fold (fn (v, T) => ZTVars.add (v, ztyp T)));
val inst = ZVars.build (ts |> fold (fn ((v, T), t) => ZVars.add ((v, ztyp T), zterm t)));
val typ = instantiate_type_same instT;
val term = instantiate_term_same typ inst;
in map_proof {hyps = false} typ term prf end;
fun varifyT_proof names prf =
if null names then prf
else
let
val tab = ZTVars.build (names |> fold (fn ((a, S), b) => ZTVars.add (((a, ~1), S), b)));
val typ =
ZTypes.unsynchronized_cache (subst_type_same (fn v =>
(case ZTVars.lookup tab v of
NONE => raise Same.SAME
| SOME w => ZTVar w)));
in map_proof_types {hyps = false} typ prf end;
fun legacy_freezeT_proof t prf =
(case Type.legacy_freezeT t of
NONE => prf
| SOME f =>
let
val tvar = ztyp_of o Same.function f;
val typ = ZTypes.unsynchronized_cache (subst_type_same tvar);
in map_proof_types {hyps = false} typ prf end);
(* permutations *)
fun rotate_proof thy Bs Bi' params asms m prf =
let
val {ztyp, zterm} = zterm_cache thy;
val i = length asms;
val j = length Bs;
in
ZAbsps (map zterm Bs @ [zterm Bi']) (ZAppps (prf, map ZBoundp
(j downto 1) @ [ZAbsts (map (apsnd ztyp) params) (ZAbsps (map zterm asms)
(ZAppps (ZAppts (ZBoundp i, map ZBound ((length params - 1) downto 0)),
map ZBoundp (((i - m - 1) downto 0) @ ((i - 1) downto (i - m))))))]))
end;
fun permute_prems_proof thy prems' j k prf =
let
val {zterm, ...} = zterm_cache thy;
val n = length prems';
in
ZAbsps (map zterm prems')
(ZAppps (prf, map ZBoundp ((n - 1 downto n - j) @ (k - 1 downto 0) @ (n - j - 1 downto k))))
end;
(* lifting *)
fun incr_tvar_same inc =
if inc = 0 then Same.same
else
let fun tvar ((a, i), S) = if i >= 0 then ZTVar ((a, i + inc), S) else raise Same.SAME
in ZTypes.unsynchronized_cache (subst_type_same tvar) end;
fun incr_indexes_proof inc prf =
let
val typ = incr_tvar_same inc;
fun var ((x, i), T) = if i >= 0 then ZVar ((x, i + inc), T) else raise Same.SAME;
val term = subst_term_same typ var;
in map_proof {hyps = false} typ term prf end;
fun lift_proof thy gprop inc prems prf =
let
val {ztyp, zterm} = zterm_cache thy;
val typ = incr_tvar_same inc;
fun term Ts lev =
if null Ts andalso inc = 0 then Same.same
else
let
val n = length Ts;
fun incr lev (ZVar ((x, i), T)) =
if i >= 0 then combound (ZVar ((x, i + inc), ZFuns (Ts, Same.commit typ T)), lev, n)
else raise Same.SAME
| incr _ (ZBound _) = raise Same.SAME
| incr _ (ZConst0 _) = raise Same.SAME
| incr _ (ZConst1 (c, T)) = ZConst1 (c, typ T)
| incr _ (ZConst (c, Ts)) = ZConst (c, Same.map typ Ts)
| incr lev (ZAbs (x, T, t)) =
(ZAbs (x, typ T, Same.commit (incr (lev + 1)) t)
handle Same.SAME => ZAbs (x, T, incr (lev + 1) t))
| incr lev (ZApp (t, u)) =
(ZApp (incr lev t, Same.commit (incr lev) u)
handle Same.SAME => ZApp (t, incr lev u))
| incr _ (ZClass (T, c)) = ZClass (typ T, c);
in incr lev end;
fun proof Ts lev (ZAbst (a, T, p)) =
(ZAbst (a, typ T, Same.commit (proof Ts (lev + 1)) p)
handle Same.SAME => ZAbst (a, T, proof Ts (lev + 1) p))
| proof Ts lev (ZAbsp (a, t, p)) =
(ZAbsp (a, term Ts lev t, Same.commit (proof Ts lev) p)
handle Same.SAME => ZAbsp (a, t, proof Ts lev p))
| proof Ts lev (ZAppt (p, t)) =
(ZAppt (proof Ts lev p, Same.commit (term Ts lev) t)
handle Same.SAME => ZAppt (p, term Ts lev t))
| proof Ts lev (ZAppp (p, q)) =
(ZAppp (proof Ts lev p, Same.commit (proof Ts lev) q)
handle Same.SAME => ZAppp (p, proof Ts lev q))
| proof Ts lev (ZConstp (a, A, instT, inst)) =
let val (instT', insts') = map_insts_same typ (term Ts lev) (instT, inst)
in ZConstp (a, A, instT', insts') end
| proof _ _ (ZClassp (T, c)) = ZClassp (typ T, c)
| proof _ _ _ = raise Same.SAME;
val k = length prems;
fun mk_app b (i, j, p) =
if b then (i - 1, j, ZAppp (p, ZBoundp i)) else (i, j - 1, ZAppt (p, ZBound j));
fun lift Ts bs i j (Const ("Pure.imp", _) $ A $ B) =
ZAbsp ("H", Same.commit (term Ts 0) (zterm A), lift Ts (true :: bs) (i + 1) j B)
| lift Ts bs i j (Const ("Pure.all", _) $ Abs (a, T, t)) =
let val T' = ztyp T
in ZAbst (a, T', lift (T' :: Ts) (false :: bs) i (j + 1) t) end
| lift Ts bs i j _ =
ZAppps (Same.commit (proof (rev Ts) 0) prf,
map (fn k => (#3 (fold_rev mk_app bs (i - 1, j - 1, ZBoundp k)))) (i + k - 1 downto i));
in ZAbsps (map zterm prems) (lift [] [] 0 0 gprop) end;
(* higher-order resolution *)
fun mk_asm_prf C i m =
let
fun imp _ i 0 = ZBoundp i
| imp (ZApp (ZApp (ZConst0 "Pure.imp", A), B)) i m = ZAbsp ("H", A, imp B (i + 1) (m - 1))
| imp _ i _ = ZBoundp i;
fun all (ZApp (ZConst1 ("Pure.all", _), ZAbs (a, T, t))) = ZAbst (a, T, all t)
| all t = imp t (~ i) m
in all C end;
fun assumption_proof thy envir Bs Bi n visible prf =
let
val cache as {zterm, ...} = norm_cache thy;
val normt = zterm #> Same.commit (norm_term_same cache envir);
in
ZAbsps (map normt Bs)
(ZAppps (prf, map ZBoundp (length Bs - 1 downto 0) @ [mk_asm_prf (normt Bi) n ~1]))
|> norm_proof_cache cache envir visible
end;
fun flatten_params_proof i j n (ZApp (ZApp (ZConst0 "Pure.imp", A), B), k) =
ZAbsp ("H", A, flatten_params_proof (i + 1) j n (B, k))
| flatten_params_proof i j n (ZApp (ZConst1 ("Pure.all", _), ZAbs (a, T, t)), k) =
ZAbst (a, T, flatten_params_proof i (j + 1) n (t, k))
| flatten_params_proof i j n (_, k) =
ZAppps (ZAppts (ZBoundp (k + i),
map ZBound (j - 1 downto 0)), map ZBoundp (remove (op =) (i - n) (i - 1 downto 0)));
fun bicompose_proof thy env smax flatten Bs As A oldAs n m visible rprf sprf =
let
val cache as {zterm, ...} = norm_cache thy;
val normt = zterm #> Same.commit (norm_term_same cache env);
val normp = norm_proof_cache cache env visible;
val lb = length Bs;
val la = length As;
fun proof p q =
ZAbsps (map normt (Bs @ As))
(ZAppp (ZAppps (q, map ZBoundp (lb + la - 1 downto la)),
ZAppps (p, (if n > 0 then [mk_asm_prf (normt (the A)) n m] else []) @
map (if flatten then flatten_params_proof 0 0 n else ZBoundp o snd)
(map normt oldAs ~~ (la - 1 downto 0)))));
in
if Envir.is_empty env then proof rprf sprf
else proof (normp rprf) (if Envir.above env smax then sprf else normp sprf)
end;
(* sort constraints within the logic *)
type sorts_proof = (class * class -> zproof) * (string * class list list * class -> zproof);
fun of_sort_proof algebra (classrel_proof, arity_proof) hyps =
Sorts.of_sort_derivation algebra
{class_relation = fn _ => fn _ => fn (prf, c1) => fn c2 =>
if c1 = c2 then prf else ZAppp (classrel_proof (c1, c2), prf),
type_constructor = fn (a, _) => fn dom => fn c =>
let val Ss = map (map snd) dom and prfs = maps (map fst) dom
in ZAppps (arity_proof (a, Ss, c), prfs) end,
type_variable = fn typ => map (fn c => (hyps (typ, c), c)) (Type.sort_of_atyp typ)};
fun unconstrainT_proof thy sorts_proof (ucontext: Logic.unconstrain_context) =
let
val cache = norm_cache thy;
val algebra = Sign.classes_of thy;
val typ =
ZTypes.unsynchronized_cache
(typ_of #> #typ_operation ucontext {strip_sorts = true} #> ztyp_of);
val typ_sort = #typ_operation ucontext {strip_sorts = false};
fun hyps T =
(case AList.lookup (op =) (#constraints ucontext) T of
SOME t => ZHyp (#zterm cache t)
| NONE => raise Fail "unconstrainT_proof: missing constraint");
fun class (T, c) =
let val T' = Same.commit typ_sort (#typ cache T)
in the_single (of_sort_proof algebra sorts_proof hyps (T', [c])) end;
in
map_proof_types {hyps = false} typ #> map_class_proof class #> beta_norm_prooft
#> fold_rev (implies_intr_proof' o #zterm cache o #2) (#constraints ucontext)
end;
end;