src/HOLCF/cfun2.ML
author wenzelm
Fri, 23 Jul 1999 16:50:55 +0200
changeset 7067 601f930d3739
parent 297 5ef75ff3baeb
permissions -rw-r--r--
replace assoc lists by Symtab.table;

(*  Title: 	HOLCF/cfun2.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen

Lemmas for cfun2.thy 
*)

open Cfun2;

(* ------------------------------------------------------------------------ *)
(* access to less_cfun in class po                                          *)
(* ------------------------------------------------------------------------ *)

val less_cfun = prove_goal Cfun2.thy "( f1 << f2 ) = (fapp(f1) << fapp(f2))"
(fn prems =>
	[
	(rtac (inst_cfun_po RS ssubst) 1),
	(fold_goals_tac [less_cfun_def]),
	(rtac refl 1)
	]);

(* ------------------------------------------------------------------------ *)
(* Type 'a ->'b  is pointed                                                 *)
(* ------------------------------------------------------------------------ *)

val minimal_cfun = prove_goalw Cfun2.thy [UU_cfun_def] "UU_cfun << f"
(fn prems =>
	[
	(rtac (less_cfun RS ssubst) 1),
	(rtac (Abs_Cfun_inverse2 RS ssubst) 1),
	(rtac contX_const 1),
	(fold_goals_tac [UU_fun_def]),
	(rtac minimal_fun 1)
	]);

(* ------------------------------------------------------------------------ *)
(* fapp yields continuous functions in 'a => 'b                             *)
(* this is continuity of fapp in its 'second' argument                      *)
(* contX_fapp2 ==> monofun_fapp2 & contlub_fapp2                            *)
(* ------------------------------------------------------------------------ *)

val contX_fapp2 = prove_goal Cfun2.thy "contX(fapp(fo))"
(fn prems =>
	[
	(res_inst_tac [("P","contX")] CollectD 1),
	(fold_goals_tac [Cfun_def]),
	(rtac Rep_Cfun 1)
	]);

val monofun_fapp2 = contX_fapp2 RS contX2mono;
(* monofun(fapp(?fo1)) *)


val contlub_fapp2 = contX_fapp2 RS contX2contlub;
(* contlub(fapp(?fo1)) *)

(* ------------------------------------------------------------------------ *)
(* expanded thms contX_fapp2, contlub_fapp2                                 *)
(* looks nice with mixfix syntac _[_]                                       *)
(* ------------------------------------------------------------------------ *)

val contX_cfun_arg = (contX_fapp2 RS contXE RS spec RS mp);
(* is_chain(?x1) ==> range(%i. ?fo3[?x1(i)]) <<| ?fo3[lub(range(?x1))]      *)
 
val contlub_cfun_arg = (contlub_fapp2 RS contlubE RS spec RS mp);
(* is_chain(?x1) ==> ?fo4[lub(range(?x1))] = lub(range(%i. ?fo4[?x1(i)]))   *)



(* ------------------------------------------------------------------------ *)
(* fapp is monotone in its 'first' argument                                 *)
(* ------------------------------------------------------------------------ *)

val monofun_fapp1 = prove_goalw Cfun2.thy [monofun] "monofun(fapp)"
(fn prems =>
	[
	(strip_tac 1),
	(etac (less_cfun RS subst) 1)
	]);


(* ------------------------------------------------------------------------ *)
(* monotonicity of application fapp in mixfix syntax [_]_                   *)
(* ------------------------------------------------------------------------ *)

val monofun_cfun_fun = prove_goal Cfun2.thy  "f1 << f2 ==> f1[x] << f2[x]"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(res_inst_tac [("x","x")] spec 1),
	(rtac (less_fun RS subst) 1),
	(etac (monofun_fapp1 RS monofunE RS spec RS spec RS mp) 1)
	]);


val monofun_cfun_arg = (monofun_fapp2 RS monofunE RS spec RS spec RS mp);
(* ?x2 << ?x1 ==> ?fo5[?x2] << ?fo5[?x1]                                    *)

(* ------------------------------------------------------------------------ *)
(* monotonicity of fapp in both arguments in mixfix syntax [_]_             *)
(* ------------------------------------------------------------------------ *)

val monofun_cfun = prove_goal Cfun2.thy
	"[|f1<<f2;x1<<x2|] ==> f1[x1] << f2[x2]"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac trans_less 1),
	(etac monofun_cfun_arg 1),
	(etac monofun_cfun_fun 1)
	]);


(* ------------------------------------------------------------------------ *)
(* ch2ch - rules for the type 'a -> 'b                                      *)
(* use MF2 lemmas from Cont.ML                                              *)
(* ------------------------------------------------------------------------ *)

val ch2ch_fappR = prove_goal Cfun2.thy 
 "is_chain(Y) ==> is_chain(%i. f[Y(i)])"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(etac (monofun_fapp2 RS ch2ch_MF2R) 1)
	]);


val ch2ch_fappL = (monofun_fapp1 RS ch2ch_MF2L);
(* is_chain(?F) ==> is_chain(%i. ?F(i)[?x])                                 *)


(* ------------------------------------------------------------------------ *)
(*  the lub of a chain of continous functions is monotone                   *)
(* use MF2 lemmas from Cont.ML                                              *)
(* ------------------------------------------------------------------------ *)

val lub_cfun_mono = prove_goal Cfun2.thy 
	"is_chain(F) ==> monofun(% x.lub(range(% j.F(j)[x])))"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac lub_MF2_mono 1),
	(rtac monofun_fapp1 1),
	(rtac (monofun_fapp2 RS allI) 1),
	(atac 1)
	]);

(* ------------------------------------------------------------------------ *)
(* a lemma about the exchange of lubs for type 'a -> 'b                     *)
(* use MF2 lemmas from Cont.ML                                              *)
(* ------------------------------------------------------------------------ *)

val ex_lubcfun = prove_goal Cfun2.thy
	"[| is_chain(F); is_chain(Y) |] ==>\
\		lub(range(%j. lub(range(%i. F(j)[Y(i)])))) =\
\		lub(range(%i. lub(range(%j. F(j)[Y(i)]))))"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac ex_lubMF2 1),
	(rtac monofun_fapp1 1),
	(rtac (monofun_fapp2 RS allI) 1),
	(atac 1),
	(atac 1)
	]);

(* ------------------------------------------------------------------------ *)
(* the lub of a chain of cont. functions is continuous                      *)
(* ------------------------------------------------------------------------ *)

val contX_lubcfun = prove_goal Cfun2.thy 
	"is_chain(F) ==> contX(% x.lub(range(% j.F(j)[x])))"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac monocontlub2contX 1),
	(etac lub_cfun_mono 1),
	(rtac contlubI 1),
	(strip_tac 1),
	(rtac (contlub_cfun_arg RS ext RS ssubst) 1),
	(atac 1),
	(etac ex_lubcfun 1),
	(atac 1)
	]);

(* ------------------------------------------------------------------------ *)
(* type 'a -> 'b is chain complete                                          *)
(* ------------------------------------------------------------------------ *)

val lub_cfun = prove_goal Cfun2.thy 
  "is_chain(CCF) ==> range(CCF) <<| fabs(% x.lub(range(% i.CCF(i)[x])))"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac is_lubI 1),
	(rtac conjI 1),
	(rtac ub_rangeI 1),  
	(rtac allI 1),
	(rtac (less_cfun RS ssubst) 1),
	(rtac (Abs_Cfun_inverse2 RS ssubst) 1),
	(etac contX_lubcfun 1),
	(rtac (lub_fun RS is_lubE RS conjunct1 RS ub_rangeE RS spec) 1),
	(etac (monofun_fapp1 RS ch2ch_monofun) 1),
	(strip_tac 1),
	(rtac (less_cfun RS ssubst) 1),
	(rtac (Abs_Cfun_inverse2 RS ssubst) 1),
	(etac contX_lubcfun 1),
	(rtac (lub_fun RS is_lubE RS conjunct2 RS spec RS mp) 1),
	(etac (monofun_fapp1 RS ch2ch_monofun) 1),
	(etac (monofun_fapp1 RS ub2ub_monofun) 1)
	]);

val thelub_cfun = (lub_cfun RS thelubI);
(* 
is_chain(?CCF1) ==> lub(range(?CCF1)) = fabs(%x. lub(range(%i. ?CCF1(i)[x])))
*)

val cpo_cfun = prove_goal Cfun2.thy 
  "is_chain(CCF::nat=>('a::pcpo->'b::pcpo)) ==> ? x. range(CCF) <<| x"
(fn prems =>
	[
	(cut_facts_tac prems 1),
	(rtac exI 1),
	(etac lub_cfun 1)
	]);


(* ------------------------------------------------------------------------ *)
(* Extensionality in 'a -> 'b                                               *)
(* ------------------------------------------------------------------------ *)

val ext_cfun = prove_goal Cfun1.thy "(!!x. f[x] = g[x]) ==> f = g"
 (fn prems =>
	[
	(res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
	(res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
	(res_inst_tac [("f","fabs")] arg_cong 1),
	(rtac ext 1),
	(resolve_tac prems 1)
	]);

(* ------------------------------------------------------------------------ *)
(* Monotonicity of fabs                                                     *)
(* ------------------------------------------------------------------------ *)

val semi_monofun_fabs = prove_goal Cfun2.thy 
	"[|contX(f);contX(g);f<<g|]==>fabs(f)<<fabs(g)"
 (fn prems =>
	[
	(rtac (less_cfun RS iffD2) 1),
	(rtac (Abs_Cfun_inverse2 RS ssubst) 1),
	(resolve_tac prems 1),
	(rtac (Abs_Cfun_inverse2 RS ssubst) 1),
	(resolve_tac prems 1),
	(resolve_tac prems 1)
	]);

(* ------------------------------------------------------------------------ *)
(* Extenionality wrt. << in 'a -> 'b                                        *)
(* ------------------------------------------------------------------------ *)

val less_cfun2 = prove_goal Cfun2.thy "(!!x. f[x] << g[x]) ==> f << g"
 (fn prems =>
	[
	(res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
	(res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
	(rtac semi_monofun_fabs 1),
	(rtac contX_fapp2 1),
	(rtac contX_fapp2 1),
	(rtac (less_fun RS iffD2) 1),
	(rtac allI 1),
	(resolve_tac prems 1)
	]);