(* Title: Pure/sorts.ML
ID: $Id$
Author: Markus Wenzel and Stefan Berghofer, TU Muenchen
The order-sorted algebra of type classes.
Classes denote (possibly empty) collections of types that are
partially ordered by class inclusion. They are represented
symbolically by strings.
Sorts are intersections of finitely many classes. They are represented
by lists of classes. Normal forms of sorts are sorted lists of
minimal classes (wrt. current class inclusion).
*)
signature SORTS =
sig
val eq_set: sort list * sort list -> bool
val union: sort list -> sort list -> sort list
val subtract: sort list -> sort list -> sort list
val remove_sort: sort -> sort list -> sort list
val insert_sort: sort -> sort list -> sort list
val insert_typ: typ -> sort list -> sort list
val insert_typs: typ list -> sort list -> sort list
val insert_term: term -> sort list -> sort list
val insert_terms: term list -> sort list -> sort list
type classes
type arities
val class_eq: classes -> class * class -> bool
val class_less: classes -> class * class -> bool
val class_le: classes -> class * class -> bool
val sort_eq: classes -> sort * sort -> bool
val sort_le: classes -> sort * sort -> bool
val sorts_le: classes -> sort list * sort list -> bool
val inter_sort: classes -> sort * sort -> sort
val norm_sort: classes -> sort -> sort
val add_arities: Pretty.pp -> classes -> string * (class * sort list) list -> arities -> arities
val rebuild_arities: Pretty.pp -> classes -> arities -> arities
val merge_arities: Pretty.pp -> classes -> arities * arities -> arities
val add_class: Pretty.pp -> class * class list -> classes -> classes
val add_classrel: Pretty.pp -> class * class -> classes -> classes
val merge_classes: Pretty.pp -> classes * classes -> classes
type class_error
val class_error: Pretty.pp -> class_error -> 'a
exception CLASS_ERROR of class_error
val mg_domain: classes * arities -> string -> sort -> sort list (*exception CLASS_ERROR*)
val of_sort: classes * arities -> typ * sort -> bool
val of_sort_derivation: Pretty.pp -> classes * arities ->
{classrel: 'a * class -> class -> 'a,
constructor: string -> ('a * class) list list -> class -> 'a,
variable: typ -> ('a * class) list} ->
typ * sort -> 'a list (*exception CLASS_ERROR*)
val witness_sorts: classes * arities -> string list ->
sort list -> sort list -> (typ * sort) list
end;
structure Sorts: SORTS =
struct
(** ordered lists of sorts **)
val eq_set = OrdList.eq_set Term.sort_ord;
val op union = OrdList.union Term.sort_ord;
val subtract = OrdList.subtract Term.sort_ord;
val remove_sort = OrdList.remove Term.sort_ord;
val insert_sort = OrdList.insert Term.sort_ord;
fun insert_typ (TFree (_, S)) Ss = insert_sort S Ss
| insert_typ (TVar (_, S)) Ss = insert_sort S Ss
| insert_typ (Type (_, Ts)) Ss = insert_typs Ts Ss
and insert_typs [] Ss = Ss
| insert_typs (T :: Ts) Ss = insert_typs Ts (insert_typ T Ss);
fun insert_term (Const (_, T)) Ss = insert_typ T Ss
| insert_term (Free (_, T)) Ss = insert_typ T Ss
| insert_term (Var (_, T)) Ss = insert_typ T Ss
| insert_term (Bound _) Ss = Ss
| insert_term (Abs (_, T, t)) Ss = insert_term t (insert_typ T Ss)
| insert_term (t $ u) Ss = insert_term t (insert_term u Ss);
fun insert_terms [] Ss = Ss
| insert_terms (t :: ts) Ss = insert_terms ts (insert_term t Ss);
(** order-sorted algebra **)
(*
classes: graph representing class declarations together with proper
subclass relation, which needs to be transitive and acyclic.
arities: table of association lists of all type arities; (t, ars)
means that type constructor t has the arities ars; an element
(c, (c0, Ss)) of ars represents the arity t::(Ss)c being derived
via c0 <= c. "Coregularity" of the arities structure requires
that for any two declarations t::(Ss1)c1 and t::(Ss2)c2 such that
c1 <= c2 holds Ss1 <= Ss2.
*)
type classes = stamp Graph.T;
type arities = (class * (class * sort list)) list Symtab.table;
(* class relations *)
fun class_eq (_: classes) (c1, c2:class) = c1 = c2;
val class_less: classes -> class * class -> bool = Graph.is_edge;
fun class_le classes (c1, c2) = c1 = c2 orelse class_less classes (c1, c2);
(* sort relations *)
fun sort_le classes (S1, S2) =
forall (fn c2 => exists (fn c1 => class_le classes (c1, c2)) S1) S2;
fun sorts_le classes (Ss1, Ss2) =
ListPair.all (sort_le classes) (Ss1, Ss2);
fun sort_eq classes (S1, S2) =
sort_le classes (S1, S2) andalso sort_le classes (S2, S1);
(* intersection *)
fun inter_class classes c S =
let
fun intr [] = [c]
| intr (S' as c' :: c's) =
if class_le classes (c', c) then S'
else if class_le classes (c, c') then intr c's
else c' :: intr c's
in intr S end;
fun inter_sort classes (S1, S2) =
sort_strings (fold (inter_class classes) S1 S2);
(* normal forms *)
fun norm_sort _ [] = []
| norm_sort _ (S as [_]) = S
| norm_sort classes S =
filter (fn c => not (exists (fn c' => class_less classes (c', c)) S)) S
|> sort_distinct string_ord;
(** build algebras **)
(* classes *)
local
fun err_dup_classes cs =
error ("Duplicate declaration of class(es): " ^ commas_quote cs);
fun err_cyclic_classes pp css =
error (cat_lines (map (fn cs =>
"Cycle in class relation: " ^ Pretty.string_of_classrel pp cs) css));
in
fun add_class pp (c, cs) classes =
let
val classes' = classes |> Graph.new_node (c, stamp ())
handle Graph.DUP dup => err_dup_classes [dup];
val classes'' = classes' |> fold Graph.add_edge_trans_acyclic (map (pair c) cs)
handle Graph.CYCLES css => err_cyclic_classes pp css;
in classes'' end;
fun add_classrel pp rel classes =
classes |> Graph.add_edge_trans_acyclic rel
handle Graph.CYCLES css => err_cyclic_classes pp css;
fun merge_classes pp args : classes =
Graph.merge_trans_acyclic (op =) args
handle Graph.DUPS cs => err_dup_classes cs
| Graph.CYCLES css => err_cyclic_classes pp css;
end;
(* arities *)
local
fun for_classes _ NONE = ""
| for_classes pp (SOME (c1, c2)) =
" for classes " ^ Pretty.string_of_classrel pp [c1, c2];
fun err_conflict pp t cc (c, Ss) (c', Ss') =
error ("Conflict of type arities" ^ for_classes pp cc ^ ":\n " ^
Pretty.string_of_arity pp (t, Ss, [c]) ^ " and\n " ^
Pretty.string_of_arity pp (t, Ss', [c']));
fun coregular pp C t (c, (c0, Ss)) ars =
let
fun conflict (c', (_, Ss')) =
if class_le C (c, c') andalso not (sorts_le C (Ss, Ss')) then
SOME ((c, c'), (c', Ss'))
else if class_le C (c', c) andalso not (sorts_le C (Ss', Ss)) then
SOME ((c', c), (c', Ss'))
else NONE;
in
(case get_first conflict ars of
SOME ((c1, c2), (c', Ss')) => err_conflict pp t (SOME (c1, c2)) (c, Ss) (c', Ss')
| NONE => (c, (c0, Ss)) :: ars)
end;
fun insert pp C t (c, (c0, Ss)) ars =
(case AList.lookup (op =) ars c of
NONE => coregular pp C t (c, (c0, Ss)) ars
| SOME (_, Ss') =>
if sorts_le C (Ss, Ss') then ars
else if sorts_le C (Ss', Ss) then
coregular pp C t (c, (c0, Ss))
(filter_out (fn (c'', (_, Ss'')) => c = c'' andalso Ss'' = Ss') ars)
else err_conflict pp t NONE (c, Ss) (c, Ss'));
fun complete C (c0, Ss) = map (rpair (c0, Ss)) (Graph.all_succs C [c0]);
in
fun add_arities pp classes (t, ars) arities =
let val ars' =
Symtab.lookup_list arities t
|> fold_rev (fold_rev (insert pp classes t)) (map (complete classes) ars)
in Symtab.update (t, ars') arities end;
fun add_arities_table pp classes =
Symtab.fold (fn (t, ars) => add_arities pp classes (t, map snd ars));
fun rebuild_arities pp classes arities =
Symtab.empty
|> add_arities_table pp classes arities;
fun merge_arities pp classes (arities1, arities2) =
Symtab.empty
|> add_arities_table pp classes arities1
|> add_arities_table pp classes arities2;
end;
(** sorts of types **)
(* errors *)
datatype class_error = NoClassrel of class * class | NoArity of string * class;
fun class_error pp (NoClassrel (c1, c2)) =
error ("No class relation " ^ Pretty.string_of_classrel pp [c1, c2])
| class_error pp (NoArity (a, c)) =
error ("No type arity " ^ Pretty.string_of_arity pp (a, [], [c]));
exception CLASS_ERROR of class_error;
(* mg_domain *)
fun mg_domain (classes, arities) a S =
let
fun dom c =
(case AList.lookup (op =) (Symtab.lookup_list arities a) c of
NONE => raise CLASS_ERROR (NoArity (a, c))
| SOME (_, Ss) => Ss);
fun dom_inter c Ss = ListPair.map (inter_sort classes) (dom c, Ss);
in
(case S of
[] => raise Fail "Unknown domain of empty intersection"
| c :: cs => fold dom_inter cs (dom c))
end;
(* of_sort *)
fun of_sort (classes, arities) =
let
fun ofS (_, []) = true
| ofS (TFree (_, S), S') = sort_le classes (S, S')
| ofS (TVar (_, S), S') = sort_le classes (S, S')
| ofS (Type (a, Ts), S) =
let val Ss = mg_domain (classes, arities) a S in
ListPair.all ofS (Ts, Ss)
end handle CLASS_ERROR _ => false;
in ofS end;
(* of_sort_derivation *)
fun of_sort_derivation pp (classes, arities) {classrel, constructor, variable} =
let
fun weaken_path (x, c1 :: c2 :: cs) = weaken_path (classrel (x, c1) c2, c2 :: cs)
| weaken_path (x, _) = x;
fun weaken (x, c1) c2 =
(case Graph.irreducible_paths classes (c1, c2) of
[] => raise CLASS_ERROR (NoClassrel (c1, c2))
| cs :: _ => weaken_path (x, cs));
fun weakens S1 S2 = S2 |> map (fn c2 =>
(case S1 |> find_first (fn (_, c1) => class_le classes (c1, c2)) of
SOME d1 => weaken d1 c2
| NONE => error ("Cannot derive subsort relation " ^
Pretty.string_of_sort pp (map #2 S1) ^ " < " ^ Pretty.string_of_sort pp S2)));
fun derive _ [] = []
| derive (Type (a, Ts)) S =
let
val Ss = mg_domain (classes, arities) a S;
val dom = map2 (fn T => fn S => derive T S ~~ S) Ts Ss;
in
S |> map (fn c =>
let
val (c0, Ss') = the (AList.lookup (op =) (Symtab.lookup_list arities a) c);
val dom' = map2 (fn d => fn S' => weakens d S' ~~ S') dom Ss';
in weaken (constructor a dom' c0, c0) c end)
end
| derive T S = weakens (variable T) S;
in uncurry derive end;
(* witness_sorts *)
fun witness_sorts (classes, arities) types hyps sorts =
let
fun le S1 S2 = sort_le classes (S1, S2);
fun get_solved S2 (T, S1) = if le S1 S2 then SOME (T, S2) else NONE;
fun get_hyp S2 S1 = if le S1 S2 then SOME (TFree ("'hyp", S1), S2) else NONE;
fun mg_dom t S = SOME (mg_domain (classes, arities) t S) handle CLASS_ERROR _ => NONE;
fun witn_sort _ [] solved_failed = (SOME (propT, []), solved_failed)
| witn_sort path S (solved, failed) =
if exists (le S) failed then (NONE, (solved, failed))
else
(case get_first (get_solved S) solved of
SOME w => (SOME w, (solved, failed))
| NONE =>
(case get_first (get_hyp S) hyps of
SOME w => (SOME w, (w :: solved, failed))
| NONE => witn_types path types S (solved, failed)))
and witn_sorts path x = fold_map (witn_sort path) x
and witn_types _ [] S (solved, failed) = (NONE, (solved, S :: failed))
| witn_types path (t :: ts) S solved_failed =
(case mg_dom t S of
SOME SS =>
(*do not descend into stronger args (achieving termination)*)
if exists (fn D => le D S orelse exists (le D) path) SS then
witn_types path ts S solved_failed
else
let val (ws, (solved', failed')) = witn_sorts (S :: path) SS solved_failed in
if forall is_some ws then
let val w = (Type (t, map (#1 o the) ws), S)
in (SOME w, (w :: solved', failed')) end
else witn_types path ts S (solved', failed')
end
| NONE => witn_types path ts S solved_failed);
in map_filter I (#1 (witn_sorts [] sorts ([], []))) end;
end;