(* Title: HOL/Prolog/HOHH.thy
ID: $Id$
Author: David von Oheimb (based on a lecture on Lambda Prolog by Nadathur)
*)
header {* Higher-order hereditary Harrop formulas *}
theory HOHH
imports HOL
uses "prolog.ML"
begin
method_setup ptac =
{* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (Prolog.ptac ctxt thms)) *}
"Basic Lambda Prolog interpreter"
method_setup prolog =
{* Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD (Prolog.prolog_tac ctxt thms)) *}
"Lambda Prolog interpreter"
consts
(* D-formulas (programs): D ::= !x. D | D .. D | D :- G | A *)
Dand :: "[bool, bool] => bool" (infixr ".." 28)
Dif :: "[bool, bool] => bool" (infixl ":-" 29)
(* G-formulas (goals): G ::= A | G & G | G | G | ? x. G
| True | !x. G | D => G *)
(*Dand' :: "[bool, bool] => bool" (infixr "," 35)*)
Dimp :: "[bool, bool] => bool" (infixr "=>" 27)
translations
"D :- G" => "G --> D"
"D1 .. D2" => "D1 & D2"
(*"G1 , G2" => "G1 & G2"*)
"D => G" => "D --> G"
end