src/HOL/Real/Complex_Numbers.thy
author wenzelm
Sun, 13 Jan 2002 19:42:30 +0100
changeset 12733 611ab32b2176
child 12740 4e45fb10c811
permissions -rw-r--r--
Real/Complex_Numbers.thy;

(*  Title:      HOL/Real/Complex_Numbers.thy
    ID:         $Id$
    Author:     Gertrud Bauer and Markus Wenzel, TU München
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
*)

header {* Complex numbers *}

theory Complex_Numbers = RealPow + Ring_and_Field:

subsection {* The field of real numbers *}  (* FIXME move *)

instance real :: inverse ..
instance real :: ring
  by intro_classes (auto simp add: real_add_mult_distrib)

instance real :: field
proof
  fix a b :: real
  show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" by simp
  show "b \<noteq> 0 \<Longrightarrow> a / b = a * inverse b" by (simp add: real_divide_def)
qed

lemma real_power_two: "(r::real)^2 = r * r"
  by (simp add: numeral_2_eq_2)

lemma real_sqr_ge_zero [iff]: "0 \<le> (r::real)^2"
  by (simp add: real_power_two)

lemma real_sqr_gt_zero [iff]: "(r::real) \<noteq> 0 \<Longrightarrow> 0 < r^2"
proof -
  assume "r \<noteq> 0"
  hence "0 \<noteq> r^2" by simp
  also have "0 \<le> r^2" by simp
  finally show ?thesis .
qed

lemma real_sqr_not_zero: "r \<noteq> 0 \<Longrightarrow> (r::real)^2 \<noteq> 0"
  by simp


subsection {* The field of complex numbers *}

datatype complex = Complex real real

consts Re :: "complex \<Rightarrow> real"
primrec "Re (Complex x y) = x"

consts Im :: "complex \<Rightarrow> real"
primrec "Im (Complex x y) = y"

constdefs
  complex :: "'a \<Rightarrow> complex"
  "complex x == Complex (real x) 0"
  conjg :: "complex \<Rightarrow> complex"
  "conjg z == Complex (Re z) (-Im z)"
  im_unit :: complex    ("\<i>")
  "\<i> == Complex 0 1"

instance complex :: zero ..
instance complex :: one ..
instance complex :: number ..
instance complex :: plus ..
instance complex :: minus ..
instance complex :: times ..
instance complex :: power ..
instance complex :: inverse ..

defs (overloaded)
  zero_complex_def: "0 == Complex 0 0"
  one_complex_def: "1 == Complex 1 0"
  number_of_complex_def: "number_of b == Complex (number_of b) 0"
  add_complex_def: "z + w == Complex (Re z + Re w) (Im z + Im w)"
  minus_complex_def: "z - w == Complex (Re z - Re w) (Im z - Im w)"
  uminus_complex_def: "- z == Complex (- Re z) (- Im z)"
  mult_complex_def: "z * w ==
    Complex (Re z * Re w - Im z * Im w) (Re z * Im w + Im z * Re w)"
  inverse_complex_def: "(z::complex) \<noteq> 0 \<Longrightarrow> inverse z ==
    Complex (Re z / ((Re z)^2 + (Im z)^2)) (- Im z / ((Re z)^2 + (Im z)^2))"
  divide_complex_def: "(w::complex) \<noteq> 0 \<Longrightarrow> z / (w::complex) == z * inverse w"

primrec (power_complex)
 "z^0 = 1"
 "z^(Suc n) = (z::complex) * (z^n)"

lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
  by (induct z) simp

lemma complex_equality [simp, intro?]: "Re z = Re w \<Longrightarrow> Im z = Im w \<Longrightarrow> z = w"
  by (induct z, induct w) simp

lemma Re_zero [simp]: "Re 0 = 0"
  and Im_zero [simp]: "Im 0 = 0"
  by (simp_all add: zero_complex_def)

lemma Re_one [simp]: "Re 1 = 1"
  and Im_one [simp]: "Im 1 = 0"
  by (simp_all add: one_complex_def)

lemma zero_complex_iff: "(z = 0) = (Re z = 0 \<and> Im z = 0)"
  and one_complex_iff: "(z = 1) = (Re z = 1 \<and> Im z = 0)"
  by auto

lemma Re_add [simp]: "Re (z + w) = Re z + Re w"
  by (simp add: add_complex_def)

lemma Im_add [simp]: "Im (z + w) = Im z + Im w"
  by (simp add: add_complex_def)

lemma Re_diff [simp]: "Re (z - w) = Re z - Re w"
  by (simp add: minus_complex_def)

lemma Im_diff [simp]: "Im (z - w) = Im z - Im w"
  by (simp add: minus_complex_def)

lemma Re_uminus [simp]: "Re (- z) = - Re z"
  by (simp add: uminus_complex_def)

lemma Im_uminus [simp]: "Im (- z) = - Im z"
  by (simp add: uminus_complex_def)

lemma Re_mult [simp]: "Re (z * w) = Re z * Re w - Im z * Im w"
  by (simp add: mult_complex_def)

lemma Im_mult [simp]: "Im (z * w) = Re z * Im w + Im z * Re w"
  by (simp add: mult_complex_def)

lemma complex_power_two: "z^2 = z * (z::complex)"
  by (simp add: numeral_2_eq_2)


instance complex :: field
proof
  fix z u v w :: complex
  show "(u + v) + w = u + (v + w)"
    by (simp add: add_complex_def)
  show "z + w = w + z"
    by (simp add: add_complex_def)
  show "0 + z = z"
    by (simp add: add_complex_def zero_complex_def)
  show "- z + z = 0"
    by (simp add: minus_complex_def)
  show "z - w = z + - w"
    by (simp add: add_complex_def minus_complex_def uminus_complex_def)
  show "(u * v) * w = u * (v * w)"
    by (simp add: mult_complex_def ring_mult_ac ring_distrib real_diff_def)  (* FIXME *)
  show "z * w = w * z"
    by (simp add: mult_complex_def)
  show "1 * z = z"
    by (simp add: one_complex_def mult_complex_def)
  show "(u + v) * w = u * w + v * w"
    by (simp add: add_complex_def mult_complex_def ring_distrib)
  assume neq: "w \<noteq> 0"
  show "inverse w * w = 1"
  proof
    have neq': "Re w * Re w + Im w * Im w \<noteq> 0"
    proof -
      have ge: "0 \<le> Re w * Re w"  "0 \<le> Im w * Im w" by simp_all
      from neq have "Re w \<noteq> 0 \<or> Im w \<noteq> 0" by (simp add: zero_complex_iff)
      hence "Re w * Re w \<noteq> 0 \<or> Im w * Im w \<noteq> 0" by simp
      thus ?thesis by rule (insert ge, arith+)
    qed
    with neq show "Re (inverse w * w) = Re 1"
      by (simp add: inverse_complex_def real_power_two real_add_divide_distrib [symmetric])
    from neq show "Im (inverse w * w) = Im 1"
      by (simp add: inverse_complex_def real_power_two
        real_mult_ac real_add_divide_distrib [symmetric])
  qed
  from neq show "z / w = z * inverse w"
    by (simp add: divide_complex_def)
qed


lemma im_unit_square: "\<i>^2 = -1"
  -- {* key property of the imaginary unit @{text \<i>} *}
  by (simp add: im_unit_def complex_power_two mult_complex_def number_of_complex_def)

end