Replaced (s,t) : id by s=t.
(* Title: CTT/ctt.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Tactics and lemmas for ctt.thy (Constructive Type Theory)
*)
open CTT;
signature CTT_RESOLVE =
sig
val add_mp_tac: int -> tactic
val ASSUME: (int -> tactic) -> int -> tactic
val basic_defs: thm list
val comp_rls: thm list
val element_rls: thm list
val elimL_rls: thm list
val elim_rls: thm list
val eqintr_tac: tactic
val equal_tac: thm list -> tactic
val formL_rls: thm list
val form_rls: thm list
val form_tac: tactic
val intrL2_rls: thm list
val intrL_rls: thm list
val intr_rls: thm list
val intr_tac: thm list -> tactic
val mp_tac: int -> tactic
val NE_tac: string -> int -> tactic
val pc_tac: thm list -> int -> tactic
val PlusE_tac: string -> int -> tactic
val reduction_rls: thm list
val replace_type: thm
val routine_rls: thm list
val routine_tac: thm list -> thm list -> int -> tactic
val safe_brls: (bool * thm) list
val safestep_tac: thm list -> int -> tactic
val safe_tac: thm list -> int -> tactic
val step_tac: thm list -> int -> tactic
val subst_eqtyparg: thm
val subst_prodE: thm
val SumE_fst: thm
val SumE_snd: thm
val SumE_tac: string -> int -> tactic
val SumIL2: thm
val test_assume_tac: int -> tactic
val typechk_tac: thm list -> tactic
val unsafe_brls: (bool * thm) list
end;
structure CTT_Resolve : CTT_RESOLVE =
struct
(*Formation rules*)
val form_rls = [NF, ProdF, SumF, PlusF, EqF, FF, TF]
and formL_rls = [ProdFL, SumFL, PlusFL, EqFL];
(*Introduction rules
OMITTED: EqI, because its premise is an eqelem, not an elem*)
val intr_rls = [NI0, NI_succ, ProdI, SumI, PlusI_inl, PlusI_inr, TI]
and intrL_rls = [NI_succL, ProdIL, SumIL, PlusI_inlL, PlusI_inrL];
(*Elimination rules
OMITTED: EqE, because its conclusion is an eqelem, not an elem
TE, because it does not involve a constructor *)
val elim_rls = [NE, ProdE, SumE, PlusE, FE]
and elimL_rls = [NEL, ProdEL, SumEL, PlusEL, FEL];
(*OMITTED: eqC are TC because they make rewriting loop: p = un = un = ... *)
val comp_rls = [NC0, NC_succ, ProdC, SumC, PlusC_inl, PlusC_inr];
(*rules with conclusion a:A, an elem judgement*)
val element_rls = intr_rls @ elim_rls;
(*Definitions are (meta)equality axioms*)
val basic_defs = [fst_def,snd_def];
(*Compare with standard version: B is applied to UNSIMPLIFIED expression! *)
val SumIL2 = prove_goal CTT.thy
"[| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)"
(fn prems=>
[ (resolve_tac [sym_elem] 1),
(resolve_tac [SumIL] 1),
(ALLGOALS (resolve_tac [sym_elem])),
(ALLGOALS (resolve_tac prems)) ]);
val intrL2_rls = [NI_succL, ProdIL, SumIL2, PlusI_inlL, PlusI_inrL];
(*Exploit p:Prod(A,B) to create the assumption z:B(a).
A more natural form of product elimination. *)
val subst_prodE = prove_goal CTT.thy
"[| p: Prod(A,B); a: A; !!z. z: B(a) ==> c(z): C(z) \
\ |] ==> c(p`a): C(p`a)"
(fn prems=>
[ (REPEAT (resolve_tac (prems@[ProdE]) 1)) ]);
(** Tactics for type checking **)
fun is_rigid_elem (Const("Elem",_) $ a $ _) = not (is_Var (head_of a))
| is_rigid_elem _ = false;
(*Try solving a:A by assumption provided a is rigid!*)
val test_assume_tac = SUBGOAL(fn (prem,i) =>
if is_rigid_elem (Logic.strip_assums_concl prem)
then assume_tac i else no_tac);
fun ASSUME tf i = test_assume_tac i ORELSE tf i;
(*For simplification: type formation and checking,
but no equalities between terms*)
val routine_rls = form_rls @ formL_rls @ [refl_type] @ element_rls;
fun routine_tac rls prems = ASSUME (filt_resolve_tac (prems @ rls) 4);
(*Solve all subgoals "A type" using formation rules. *)
val form_tac = REPEAT_FIRST (filt_resolve_tac(form_rls) 1);
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *)
fun typechk_tac thms =
let val tac = filt_resolve_tac (thms @ form_rls @ element_rls) 3
in REPEAT_FIRST (ASSUME tac) end;
(*Solve a:A (a flexible, A rigid) by introduction rules.
Cannot use stringtrees (filt_resolve_tac) since
goals like ?a:SUM(A,B) have a trivial head-string *)
fun intr_tac thms =
let val tac = filt_resolve_tac(thms@form_rls@intr_rls) 1
in REPEAT_FIRST (ASSUME tac) end;
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *)
fun equal_tac thms =
let val rls = thms @ form_rls @ element_rls @ intrL_rls @
elimL_rls @ [refl_elem]
in REPEAT_FIRST (ASSUME (filt_resolve_tac rls 3)) end;
(*** Simplification ***)
(*To simplify the type in a goal*)
val replace_type = prove_goal CTT.thy
"[| B = A; a : A |] ==> a : B"
(fn prems=>
[ (resolve_tac [equal_types] 1),
(resolve_tac [sym_type] 2),
(ALLGOALS (resolve_tac prems)) ]);
(*Simplify the parameter of a unary type operator.*)
val subst_eqtyparg = prove_goal CTT.thy
"a=c : A ==> (!!z.z:A ==> B(z) type) ==> B(a)=B(c)"
(fn prems=>
[ (resolve_tac [subst_typeL] 1),
(resolve_tac [refl_type] 2),
(ALLGOALS (resolve_tac prems)),
(assume_tac 1) ]);
(*Make a reduction rule for simplification.
A goal a=c becomes b=c, by virtue of a=b *)
fun resolve_trans rl = rl RS trans_elem;
(*Simplification rules for Constructive Type Theory*)
val reduction_rls = map resolve_trans comp_rls;
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification.
Uses other intro rules to avoid changing flexible goals.*)
val eqintr_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(EqI::intr_rls) 1));
(** Tactics that instantiate CTT-rules.
Vars in the given terms will be incremented!
The (resolve_tac [EqE] i) lets them apply to equality judgements. **)
fun NE_tac (sp: string) i =
TRY (resolve_tac [EqE] i) THEN res_inst_tac [ ("p",sp) ] NE i;
fun SumE_tac (sp: string) i =
TRY (resolve_tac [EqE] i) THEN res_inst_tac [ ("p",sp) ] SumE i;
fun PlusE_tac (sp: string) i =
TRY (resolve_tac [EqE] i) THEN res_inst_tac [ ("p",sp) ] PlusE i;
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **)
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *)
fun add_mp_tac i =
resolve_tac [subst_prodE] i THEN assume_tac i THEN assume_tac i;
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
fun mp_tac i = eresolve_tac [subst_prodE] i THEN assume_tac i;
(*"safe" when regarded as predicate calculus rules*)
val safe_brls = sort lessb
[ (true,FE), (true,asm_rl),
(false,ProdI), (true,SumE), (true,PlusE) ];
val unsafe_brls =
[ (false,PlusI_inl), (false,PlusI_inr), (false,SumI),
(true,subst_prodE) ];
(*0 subgoals vs 1 or more*)
val (safe0_brls, safep_brls) =
partition (apl(0,op=) o subgoals_of_brl) safe_brls;
fun safestep_tac thms i =
form_tac ORELSE
resolve_tac thms i ORELSE
biresolve_tac safe0_brls i ORELSE mp_tac i ORELSE
DETERM (biresolve_tac safep_brls i);
fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i);
fun step_tac thms = safestep_tac thms ORELSE' biresolve_tac unsafe_brls;
(*Fails unless it solves the goal!*)
fun pc_tac thms = DEPTH_SOLVE_1 o (step_tac thms);
(** The elimination rules for fst/snd **)
val SumE_fst = prove_goal CTT.thy
"p : Sum(A,B) ==> fst(p) : A"
(fn prems=>
[ (rewrite_goals_tac basic_defs),
(resolve_tac elim_rls 1),
(REPEAT (pc_tac prems 1)),
(fold_tac basic_defs) ]);
(*The first premise must be p:Sum(A,B) !!*)
val SumE_snd = prove_goal CTT.thy
"[| p: Sum(A,B); A type; !!x. x:A ==> B(x) type \
\ |] ==> snd(p) : B(fst(p))"
(fn prems=>
[ (rewrite_goals_tac basic_defs),
(resolve_tac elim_rls 1),
(resolve_tac prems 1),
(resolve_tac [replace_type] 1),
(resolve_tac [subst_eqtyparg] 1), (*like B(x) equality formation?*)
(resolve_tac comp_rls 1),
(typechk_tac prems),
(fold_tac basic_defs) ]);
end;
open CTT_Resolve;