src/HOL/Tools/ATP/atp_waldmeister.ML
author steckerm
Sat, 20 Sep 2014 10:42:08 +0200
changeset 58402 623645fdb047
parent 58401 b8ca69d9897b
child 58403 ede6ca6a54ee
permissions -rw-r--r--
Improved equality handling in skolemization

(*  Title:      HOL/Tools/ATP/atp_waldmeister.ML
    Author:     Albert Steckermeier, TU Muenchen
    Author:     Jasmin Blanchette, TU Muenchen

General-purpose functions used by the Sledgehammer modules.
*)

exception FailureMessage of string
exception FailureTerm of term * term
exception FailureWM of (term * term list * (string * string) list)

signature ATP_WALDMEISTER_SKOLEMIZER =
sig
  val skolemize : bool -> Proof.context -> term -> (Proof.context * (term list * term))
end;

signature ATP_WALDMEISTER_TYPE_ENCODER =
sig
  val encode_type : typ -> string
  val decode_type_string : string -> typ
  val encode_types : typ list -> string
  val decode_types : string -> typ list
  val encode_const : string * typ list -> string
  val decode_const : string -> string * typ list
end;

signature ATP_WALDMEISTER =
sig
  type 'a atp_problem = 'a ATP_Problem.atp_problem
  type ('a, 'b) atp_step = ('a, 'b) ATP_Proof.atp_step
  type 'a atp_proof = 'a ATP_Proof.atp_proof
  type stature = ATP_Problem_Generate.stature
  type waldmeister_info =  (string * (term list * (term option * term))) list
  
  val waldmeister_skolemize_rule : string
  
  val generate_waldmeister_problem : Proof.context -> term list -> term ->
    ((string * stature) * term) list ->
    string atp_problem * string Symtab.table * (string * term) list * int Symtab.table * 
    waldmeister_info
  val termify_waldmeister_proof : Proof.context -> string Symtab.table -> string atp_proof ->
    (term, string) atp_step list
  val introduce_waldmeister_skolems : waldmeister_info -> (term, string) atp_step list -> 
    (term, string) atp_step list
end;

structure ATP_Waldmeister_Skolemizer : ATP_WALDMEISTER_SKOLEMIZER =
struct

open HOLogic

fun contains_quantor (Const (@{const_name Ex},_) $ _) = true
  | contains_quantor (Const (@{const_name All},_) $ _) = true
  | contains_quantor (t1 $ t2) = contains_quantor t1 orelse contains_quantor t2
  | contains_quantor _ = false

fun mk_fun_for_bvar ctxt1 ctxt2 arg_trms (bound_name,ty) =
  let
    val fun_type = (map type_of arg_trms) ---> ty
    val (fun_name,_) = singleton (Variable.variant_frees ctxt2 []) ("sko_" ^ bound_name,fun_type)
    val (_,ctxt1_new) = Variable.add_fixes [fun_name] ctxt1
    val (_,ctxt2_new) = Variable.add_fixes [fun_name] ctxt2
  in
    (Term.list_comb (Free (fun_name,fun_type),arg_trms),ctxt1_new,ctxt2_new)
  end

fun skolem_free ctxt1 ctxt2 vars (bound_name,ty,trm) =
    let
      val (fun_trm,ctxt1_new,ctxt2_new) = mk_fun_for_bvar ctxt1 ctxt2 (List.rev vars) (bound_name,ty)
    in
      (Term.subst_bounds ([fun_trm],trm),ctxt1_new,ctxt2_new)
    end

fun skolem_var ctxt (bound_name,ty,trm) =
    let
      val (var_name,_) = singleton (Variable.variant_frees ctxt []) (bound_name,ty)
      val (_,ctxt') = Variable.add_fixes [var_name] ctxt
      val var = Var ((var_name,0),ty)
    in
     (Term.subst_bounds ([var],trm),ctxt',var)
    end

fun skolem_bound is_free ctxt1 ctxt2 spets vars x =
    if is_free then
      let 
        val (trm',ctxt1',ctxt2') = skolem_free ctxt1 ctxt2 vars x
      in
        (ctxt1',ctxt2',spets,trm',vars)
      end
    else
      let
        val (trm',ctxt2',var) = skolem_var ctxt2 x
      in
        (ctxt1,ctxt2',spets,trm',var::vars)
      end

fun skolemize' pos ctxt1 ctxt2 spets vars (Const (@{const_name Not},_) $ trm') =
    let
      val (ctxt1',ctxt2',spets',trm'') = skolemize' (not pos) ctxt1 ctxt2 spets vars trm'
    in
      (ctxt1',ctxt2',map mk_not spets',mk_not trm'')
    end
  | skolemize' pos ctxt1 ctxt2 spets vars (trm as (Const (@{const_name HOL.eq},t) $ a $ b)) =
    if contains_quantor trm andalso t = @{typ "bool \<Rightarrow> bool \<Rightarrow> bool"}then
      skolemize' pos ctxt1 ctxt2 (trm::spets) vars (mk_conj (mk_imp (a,b), mk_imp (b,a)))
    else
      (ctxt1,ctxt2,spets,trm)
  | skolemize' pos ctxt1 ctxt2 spets vars (trm as (Const (name,_) $ Abs x)) =
    if name = @{const_name Ex} orelse name = @{const_name All} then
      let
        val is_free =  (name = @{const_name Ex} andalso pos) 
          orelse (name = @{const_name All} andalso not pos)
        val (ctxt1',ctxt2',spets',trm',vars') = 
          skolem_bound is_free ctxt1 ctxt2 (if is_free then trm :: spets else spets) vars x
      in
        skolemize' pos ctxt1' ctxt2' spets' vars' trm'
      end
    else
      (ctxt1,ctxt2,spets,trm)
  | skolemize' pos ctxt1 ctxt2 spets vars ((c as Const (name,_)) $ a $ b) =
    if name = @{const_name conj} orelse name = @{const_name disj} orelse 
       name = @{const_name implies} then
      let
        val pos_a = if name = @{const_name implies} then not pos else pos
        val (ctxt1',ctxt2',spets',a') = skolemize'  pos_a ctxt1 ctxt2 [] vars a
        val (ctxt1'',ctxt2'',spets'',b') = skolemize' pos ctxt1' ctxt2' [] vars b
      in
        (ctxt1'',ctxt2'',
         map (fn trm => c $ a' $ trm) spets'' @ map (fn trm => c $ trm $ b) spets' @ spets,
         c $ a' $ b')
      end
    else
      (ctxt1,ctxt2,spets,c $ a $ b)
  | skolemize' _ ctxt1 ctxt2 spets _ trm = (ctxt1,ctxt2,spets,trm)

  fun skolemize positve ctxt trm = 
    let
      val (ctxt1,_,spets,skolemized_trm) = skolemize' positve ctxt ctxt [] [] trm
    in
        (ctxt1,(trm :: List.rev spets,skolemized_trm))
    end

end;

structure ATP_Waldmeister_Type_Encoder : ATP_WALDMEISTER_TYPE_ENCODER =
struct

val delimiter = ";"
val open_paranthesis = "["
val close_parathesis = "]"
val type_prefix = "Type"
val tfree_prefix = "TFree"
val tvar_prefix = "TVar"

val identifier_character = not o member (op =) [delimiter,open_paranthesis,close_parathesis]

fun encode_type (Type (name,types)) = 
type_prefix ^ open_paranthesis ^ name ^ delimiter ^ 
  (map encode_type types |> String.concatWith delimiter) ^ close_parathesis
| encode_type (TFree (name,sorts)) = 
tfree_prefix ^ open_paranthesis ^ name ^ delimiter ^ (String.concatWith delimiter sorts) ^ delimiter
| encode_type (TVar ((name,i),sorts)) =
tvar_prefix ^ open_paranthesis ^ open_paranthesis ^ name ^ delimiter ^ Int.toString i ^ 
  close_parathesis ^ delimiter ^ (String.concatWith delimiter sorts) ^ close_parathesis

fun encode_types types = (String.concatWith delimiter (map encode_type types))

fun parse_identifier x =
  (Scan.many identifier_character >> implode) x
  
fun parse_star delim scanner x = (Scan.optional (scanner ::: Scan.repeat ($$ delim |-- scanner)) []) x
  
fun parse_type x = (Scan.this_string type_prefix |-- $$ open_paranthesis |-- parse_identifier --|
  $$ delimiter -- parse_star delimiter parse_any_type --| $$ close_parathesis >> Type) x
and parse_tfree x = (Scan.this_string tfree_prefix |-- $$ open_paranthesis |-- parse_identifier --|
  $$ delimiter -- parse_star delimiter parse_identifier --| $$ close_parathesis >> TFree) x
and parse_tvar x = (Scan.this_string tvar_prefix |-- $$ open_paranthesis |-- $$ open_paranthesis
  |-- parse_identifier --| $$ delimiter -- (parse_identifier >> (Int.fromString #> the)) --| $$ 
  close_parathesis --| $$ delimiter -- parse_star delimiter parse_identifier --| 
  $$ close_parathesis >> TVar) x
and parse_any_type x = (parse_type || parse_tfree || parse_tvar) x

fun parse_types x = parse_star delimiter parse_any_type x
  
fun decode_type_string s = Scan.finite Symbol.stopper
           (Scan.error (!! (fn _ => raise FailureMessage ("unrecognized type encoding" ^
                                                quote s)) parse_type))  (Symbol.explode s) |> fst

fun decode_types s = Scan.finite Symbol.stopper
           (Scan.error (!! (fn _ => raise FailureMessage ("unrecognized type encoding" ^
           quote s))) parse_types) (Symbol.explode s) |> fst

fun encode_const (name,tys) = name ^ delimiter ^ encode_types tys

fun parse_const s = (parse_identifier --| $$ delimiter -- parse_types) s

fun decode_const s = Scan.finite Symbol.stopper
           (Scan.error (!! (fn _ => raise FailureMessage ("unrecognized const encoding" ^
           quote s))) parse_const) (Symbol.explode s) |> fst

end;

structure ATP_Waldmeister : ATP_WALDMEISTER  =
struct

open ATP_Util
open ATP_Problem
open ATP_Problem_Generate
open ATP_Proof
open ATP_Proof_Reconstruct
open ATP_Waldmeister_Skolemizer
open ATP_Waldmeister_Type_Encoder
open HOLogic

type ('a, 'b) atp_term = ('a, 'b) ATP_Problem.atp_term
type atp_connective = ATP_Problem.atp_connective
type ('a, 'b, 'c, 'd) atp_formula = ('a, 'b, 'c, 'd) ATP_Problem.atp_formula
type atp_format = ATP_Problem.atp_format
type atp_formula_role = ATP_Problem.atp_formula_role
type 'a atp_problem = 'a ATP_Problem.atp_problem
type waldmeister_info =  (string * (term list * (term option * term))) list

val const_prefix = #"c"
val var_prefix = #"V"
val free_prefix = #"v"
val conjecture_condition_name = "condition"
val waldmeister_equals = "eq"
val waldmeister_true = "true"
val waldmeister_false = "false"
val waldmeister_skolemize_rule = "waldmeister_skolemize"
val lam_lift_waldmeister_prefix = "lambda_wm"

val factsN = "Relevant facts"
val helpersN = "Helper facts"
val conjN = "Conjecture"
val conj_identifier = conjecture_prefix ^ "0"

val WM_ERROR_MSG = "Waldmeister problem generator failed: "

(*
Some utilitary functions for translation.
*)

fun gen_ascii_tuple str = (str, ascii_of str)

fun mk_eq_true (trm as (Const (@{const_name HOL.eq}, _) $ _ $ _)) = (NONE,trm)
  | mk_eq_true trm = (SOME trm,HOLogic.mk_eq (trm, @{term True}))

val is_lambda_name = String.isPrefix lam_lifted_poly_prefix

fun lookup table k = 
  List.find (fn (key, _) => key = k) table

(*
Translation from Isabelle theorms and terms to ATP terms.
*)

fun trm_to_atp'' thy (Const (x, ty)) args =
    let
      val ty_args = if is_lambda_name x then
        [] else Sign.const_typargs thy (x,ty)
    in
      [ATerm ((gen_ascii_tuple (String.str const_prefix ^ encode_const (x,ty_args)), []), args)]
    end
  | trm_to_atp'' _ (Free (x, _)) args = 
    [ATerm ((gen_ascii_tuple (String.str free_prefix ^ x), []), args)]
  | trm_to_atp'' _ (Var ((x, _), _)) args = 
    [ATerm ((gen_ascii_tuple (String.str var_prefix ^ x), []), args)]
  | trm_to_atp'' thy (trm1 $ trm2) args = trm_to_atp'' thy trm1 (trm_to_atp'' thy trm2 [] @ args)
  | trm_to_atp'' _ trm _ = raise FailureTerm (trm,trm)

fun trm_to_atp' thy trm = trm_to_atp'' thy trm [] |> hd

fun eq_trm_to_atp thy (Const (@{const_name HOL.eq}, _) $ lhs $ rhs) =
    ATerm ((("equal", "equal"), []), [trm_to_atp' thy lhs, trm_to_atp' thy rhs])
  | eq_trm_to_atp _ _ = raise FailureMessage (WM_ERROR_MSG ^ "Non-eq term")

fun thm_to_atps thy split_conj prop_term =
  if split_conj then map (eq_trm_to_atp thy) (prop_term |> HOLogic.dest_conj)
  else [prop_term |> eq_trm_to_atp thy]

(* Translation from ATP terms to Isabelle terms. *)

fun construct_term thy (name, args) =
  let
    val prefix = String.sub (name, 0)
    val encoded_name = String.extract(name,1,NONE)
    fun dummy_fun_type () = replicate (length args) dummyT ---> dummyT
  in
    if prefix = const_prefix then
      let
        val (const_name,ty_args) = decode_const encoded_name
        val const_trans_name = 
          if is_lambda_name const_name then
            lam_lift_waldmeister_prefix ^ 
            String.extract(const_name,size lam_lifted_poly_prefix,NONE)
          else
            const_name
      in
        Const (const_trans_name,
          if is_lambda_name const_name then
            dummyT
          else
            Sign.const_instance thy (const_name, ty_args))
      end
    else if prefix = free_prefix then
      Free (encoded_name, dummy_fun_type ())
    else if Char.isUpper prefix then
      Var ((name, 0), dummy_fun_type ()) 
      (* Use name instead of encoded_name because Waldmeister renames free variables. *)
    else if name = waldmeister_equals then
      (case args of 
        [_, _] => eq_const dummyT
      | _ => raise FailureMessage 
        (WM_ERROR_MSG ^ "waldmeister equals needs 2 arguments but has " ^ 
         Int.toString (length args)))
    else if name = waldmeister_true then
      @{term True}
    else if name = waldmeister_false then
      @{term False}
    else
      raise FailureMessage 
        (WM_ERROR_MSG ^ "Unknown name prefix when parsing Waldmeister proof: name = " ^ name)
  end

and atp_to_trm' thy (ATerm ((name,_), args)) =
    (case args of
      [] => construct_term thy (name, args)
     | _ => Term.list_comb (construct_term thy (name, args), map (atp_to_trm' thy) args))
     | atp_to_trm' _ _ = raise FailureMessage (WM_ERROR_MSG ^ "atp_to_trm' expects ATerm")

fun atp_to_trm thy (ATerm (("equal", _), [lhs, rhs])) =
    mk_eq (atp_to_trm' thy lhs, atp_to_trm' thy rhs)
  | atp_to_trm _ (ATerm (("$true", _), _)) = @{term True}
  | atp_to_trm _ _ = raise FailureMessage (WM_ERROR_MSG ^ "atp_to_trm expects ATerm")

fun formula_to_trm thy (AAtom aterm) = aterm |> atp_to_trm thy
  | formula_to_trm thy (AConn (ANot, [aterm])) =
    mk_not (formula_to_trm thy aterm)
  | formula_to_trm _ _ = raise FailureMessage (WM_ERROR_MSG ^ "formula_to_trm expects AAtom or AConn")

(* Abstract translation *)

fun mk_formula prefix_name name atype aterm =
  Formula ((prefix_name ^ ascii_of name, name), atype, AAtom aterm, NONE, [])

fun problem_lines_of_fact thy prefix (s,(_,(_,t))) =
  map (mk_formula prefix s Axiom) (thm_to_atps thy false t)

fun make_nice problem = nice_atp_problem true CNF problem

fun mk_conjecture aterm =
  let
    val formula = mk_anot (AAtom aterm)
  in
    Formula ((conj_identifier, ""), Hypothesis, formula, NONE, [])
  end

fun generate_waldmeister_problem ctxt hyps_t0 concl_t0 facts0 =
  let
    val thy = Proof_Context.theory_of ctxt

    val preproc = Object_Logic.atomize_term thy

    val conditions = map preproc hyps_t0
    val consequence = preproc concl_t0
    (*val hyp_ts = map preproc hyp_ts0 : term list *)
    val facts = map (apsnd preproc #> apfst fst) facts0 : (string * term) list
    
    fun map_ctxt' _ ctxt [] ys = (ctxt,ys)
      | map_ctxt' f ctxt (x :: xs) ys =
        let
          val (ctxt',x') = f ctxt x
        in
          map_ctxt' f ctxt' xs (x'::ys)
        end

    fun map_ctxt f ctxt xs = map_ctxt' f ctxt xs []
      
    fun skolemize_fact ctxt (name,trm) = 
      let 
        val (ctxt',(steps,trm')) = skolemize true ctxt trm 
      in 
        (ctxt',(name,(steps,trm')))
      end
    
    fun name_list' _ [] _ = []
      | name_list' prefix (x :: xs) i = (prefix ^ Int.toString i,x) :: name_list' prefix xs (i+1)
      
    fun name_list prefix xs = name_list' prefix xs 0 

    val (ctxt',sko_facts) = map_ctxt skolemize_fact ctxt facts : 
      Proof.context * (string * (term list * term)) list
    val (ctxt'',sko_conditions) = map_ctxt (skolemize true) ctxt' conditions : 
      Proof.context * (term list * term) list

    val post_skolem = do_cheaply_conceal_lambdas []

    val sko_eq_facts = map (apsnd (apsnd (mk_eq_true #> apsnd post_skolem))) sko_facts : 
      (string * (term list * (term option * term))) list
    val sko_eq_conditions = map (apsnd (mk_eq_true #> apsnd post_skolem)) sko_conditions 
            |> name_list conjecture_condition_name : 
      (string * (term list * (term option * term))) list
    val (_,eq_conseq as (_,(non_eq_consequence,eq_consequence))) = 
      skolemize false ctxt'' consequence |> apsnd (apsnd (mk_eq_true #> apsnd post_skolem)) :
      (Proof.context * (term list * (term option * term)))

    val sko_eq_info =
      (((conj_identifier,eq_conseq) :: sko_eq_conditions) @ map (apfst (fn name => fact_prefix ^ "0_" ^ name)) sko_eq_facts) : 
      (string * (term list * (term option * term))) list

    val fact_lines = maps (problem_lines_of_fact thy (fact_prefix ^ "0_" (* FIXME *))) sko_eq_facts
    val condition_lines =
      map (fn (name,(_,(_,trm))) => mk_formula fact_prefix name Hypothesis (eq_trm_to_atp thy trm)) sko_eq_conditions
    val axiom_lines = fact_lines @ condition_lines

    val conj_line = mk_conjecture (eq_trm_to_atp thy eq_consequence)
    
    fun is_some (SOME _) = true
      | is_some NONE = false
    
    val helper_lemmas_needed = List.exists (snd #> snd #> fst #> is_some) sko_eq_facts
      orelse List.exists (snd #> snd #> fst #> is_some) sko_eq_conditions orelse
      is_some non_eq_consequence

    val helper_lines =
      if helper_lemmas_needed then
        [(helpersN,
          @{thms waldmeister_fol}
          |> map (fn th => (("", (Global, General)), preproc (prop_of th)))
          |> maps 
            (fn ((s,_),t) => map (mk_formula helper_prefix s Axiom) (thm_to_atps thy false t)))]
      else
        []

    val problem = (factsN, axiom_lines) :: helper_lines @ [(conjN, [conj_line])]

    val (nice_problem, pool) = make_nice problem
  in
    (nice_problem, Option.map snd pool |> the_default Symtab.empty, [], Symtab.empty, sko_eq_info)
  end

fun termify_line ctxt (name, role, u, rule, deps) =
  let
    val thy = Proof_Context.theory_of ctxt
    val t = u |> formula_to_trm thy
      |> singleton (infer_formulas_types ctxt)
      |> HOLogic.mk_Trueprop
  in
    (name, role, t, rule, deps)
  end

fun termify_waldmeister_proof ctxt pool =
  nasty_atp_proof pool
  #> map (termify_line ctxt)
  #> repair_waldmeister_endgame


fun get_skolem_info info names = case map (lookup info) names |> List.find is_some of
  SOME x => x |
  NONE => NONE
  
fun fix_name name = 
  if String.isPrefix "fact" name then 
    String.extract(name,7,NONE) |> unascii_of |> curry (op ^) "fact_0_"
  else
    name

fun skolemization_steps info 
  (proof_step as ((waldmeister_name,isabelle_names), role, trm, rule, _)) =
  case get_skolem_info info (map fix_name isabelle_names) of
    NONE => [proof_step] |
    SOME (_,([],_)) => [proof_step] |
    SOME (_,(step :: steps,_)) =>
      let
        val is_conjecture = String.isPrefix "1.0.0.0" waldmeister_name

        fun mk_steps _ [] = []
          | mk_steps i (x :: xs) = (((waldmeister_name ^ "_" ^  Int.toString i),[]),Plain,
            mk_Trueprop (if is_conjecture then mk_not x else x),waldmeister_skolemize_rule,
            [(waldmeister_name ^ "_" ^  Int.toString (i-1),if i = 1 then isabelle_names else [])]) 
            :: mk_steps (i+1) xs
        val skolem_steps = ((waldmeister_name ^ "_0",isabelle_names),Unknown,
            mk_Trueprop (if is_conjecture then mk_not step else step),rule,[]) :: 
          mk_steps 1 steps
      in
        if role = Conjecture then
          [proof_step]
        else
          skolem_steps @ [((waldmeister_name,[]), Unknown, trm, waldmeister_skolemize_rule,
            [(waldmeister_name ^ "_" ^ Int.toString (length skolem_steps - 1),if length skolem_steps = 1 then isabelle_names else [])])]
      end
  
fun introduce_waldmeister_skolems info (proof_steps : (term, string) atp_step list) = proof_steps
      |> map (skolemization_steps info) |> List.concat

end;