1 (* Title: HOL/Orderings.thy
2 Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
5 header {* Abstract orderings *}
10 "~~/src/Provers/order.ML"
11 "~~/src/Provers/quasi.ML" (* FIXME unused? *)
14 subsection {* Syntactic orders *}
17 fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
18 and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
23 less_eq ("(_/ <= _)" [51, 51] 50) and
25 less ("(_/ < _)" [51, 51] 50)
28 less_eq ("op \<le>") and
29 less_eq ("(_/ \<le> _)" [51, 51] 50)
31 notation (HTML output)
32 less_eq ("op \<le>") and
33 less_eq ("(_/ \<le> _)" [51, 51] 50)
36 greater_eq (infix ">=" 50) where
37 "x >= y \<equiv> y <= x"
40 greater_eq (infix "\<ge>" 50)
43 greater (infix ">" 50) where
44 "x > y \<equiv> y < x"
49 subsection {* Quasi orders *}
51 class preorder = ord +
52 assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)"
53 and order_refl [iff]: "x \<le> x"
54 and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
57 text {* Reflexivity. *}
59 lemma eq_refl: "x = y \<Longrightarrow> x \<le> y"
60 -- {* This form is useful with the classical reasoner. *}
61 by (erule ssubst) (rule order_refl)
63 lemma less_irrefl [iff]: "\<not> x < x"
64 by (simp add: less_le_not_le)
66 lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y"
67 unfolding less_le_not_le by blast
72 lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)"
73 by (simp add: less_le_not_le)
75 lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P"
76 by (drule less_not_sym, erule contrapos_np) simp
79 text {* Transitivity. *}
81 lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z"
82 by (auto simp add: less_le_not_le intro: order_trans)
84 lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z"
85 by (auto simp add: less_le_not_le intro: order_trans)
87 lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z"
88 by (auto simp add: less_le_not_le intro: order_trans)
91 text {* Useful for simplification, but too risky to include by default. *}
93 lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True"
94 by (blast elim: less_asym)
96 lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True"
97 by (blast elim: less_asym)
100 text {* Transitivity rules for calculational reasoning *}
102 lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P"
106 text {* Dual order *}
109 "class.preorder (op \<ge>) (op >)"
110 proof qed (auto simp add: less_le_not_le intro: order_trans)
115 subsection {* Partial orders *}
117 class order = preorder +
118 assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
121 text {* Reflexivity. *}
123 lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
124 by (auto simp add: less_le_not_le intro: antisym)
126 lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y"
127 -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
128 by (simp add: less_le) blast
130 lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y"
131 unfolding less_le by blast
134 text {* Useful for simplification, but too risky to include by default. *}
136 lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
139 lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
143 text {* Transitivity rules for calculational reasoning *}
145 lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"
146 by (simp add: less_le)
148 lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b"
149 by (simp add: less_le)
152 text {* Asymmetry. *}
154 lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x"
155 by (blast intro: antisym)
157 lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
158 by (blast intro: antisym)
160 lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"
161 by (erule contrapos_pn, erule subst, rule less_irrefl)
164 text {* Least value operator *}
167 Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
168 "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))"
170 lemma Least_equality:
172 and "\<And>y. P y \<Longrightarrow> x \<le> y"
174 unfolding Least_def by (rule the_equality)
175 (blast intro: assms antisym)+
179 and "\<And>y. P y \<Longrightarrow> x \<le> y"
180 and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x"
182 unfolding Least_def by (rule theI2)
183 (blast intro: assms antisym)+
186 text {* Dual order *}
189 "class.order (op \<ge>) (op >)"
190 by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym)
195 subsection {* Linear (total) orders *}
197 class linorder = order +
198 assumes linear: "x \<le> y \<or> y \<le> x"
201 lemma less_linear: "x < y \<or> x = y \<or> y < x"
202 unfolding less_le using less_le linear by blast
204 lemma le_less_linear: "x \<le> y \<or> y < x"
205 by (simp add: le_less less_linear)
207 lemma le_cases [case_names le ge]:
208 "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P"
209 using linear by blast
211 lemma linorder_cases [case_names less equal greater]:
212 "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P"
213 using less_linear by blast
215 lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x"
216 apply (simp add: less_le)
217 using linear apply (blast intro: antisym)
220 lemma not_less_iff_gr_or_eq:
221 "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)"
222 apply(simp add:not_less le_less)
226 lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x"
227 apply (simp add: less_le)
228 using linear apply (blast intro: antisym)
231 lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x"
232 by (cut_tac x = x and y = y in less_linear, auto)
234 lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R"
235 by (simp add: neq_iff) blast
237 lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
238 by (blast intro: antisym dest: not_less [THEN iffD1])
240 lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
241 by (blast intro: antisym dest: not_less [THEN iffD1])
243 lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
244 by (blast intro: antisym dest: not_less [THEN iffD1])
246 lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x"
249 lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y"
252 (*FIXME inappropriate name (or delete altogether)*)
253 lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y"
257 text {* Dual order *}
260 "class.linorder (op \<ge>) (op >)"
261 by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear)
266 definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
267 "min a b = (if a \<le> b then a else b)"
269 definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
270 "max a b = (if a \<le> b then b else a)"
272 lemma min_le_iff_disj:
273 "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z"
274 unfolding min_def using linear by (auto intro: order_trans)
276 lemma le_max_iff_disj:
277 "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y"
278 unfolding max_def using linear by (auto intro: order_trans)
280 lemma min_less_iff_disj:
281 "min x y < z \<longleftrightarrow> x < z \<or> y < z"
282 unfolding min_def le_less using less_linear by (auto intro: less_trans)
284 lemma less_max_iff_disj:
285 "z < max x y \<longleftrightarrow> z < x \<or> z < y"
286 unfolding max_def le_less using less_linear by (auto intro: less_trans)
288 lemma min_less_iff_conj [simp]:
289 "z < min x y \<longleftrightarrow> z < x \<and> z < y"
290 unfolding min_def le_less using less_linear by (auto intro: less_trans)
292 lemma max_less_iff_conj [simp]:
293 "max x y < z \<longleftrightarrow> x < z \<and> y < z"
294 unfolding max_def le_less using less_linear by (auto intro: less_trans)
296 lemma split_min [no_atp]:
297 "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)"
298 by (simp add: min_def)
300 lemma split_max [no_atp]:
301 "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)"
302 by (simp add: max_def)
307 subsection {* Reasoning tools setup *}
313 val print_structures: Proof.context -> unit
314 val setup: theory -> theory
315 val order_tac: Proof.context -> thm list -> int -> tactic
318 structure Orders: ORDERS =
321 (** Theory and context data **)
323 fun struct_eq ((s1: string, ts1), (s2, ts2)) =
324 (s1 = s2) andalso eq_list (op aconv) (ts1, ts2);
326 structure Data = Generic_Data
328 type T = ((string * term list) * Order_Tac.less_arith) list;
330 identifier of the structure, list of operations and record of theorems
331 needed to set up the transitivity reasoner,
332 identifier and operations identify the structure uniquely. *)
335 fun merge data = AList.join struct_eq (K fst) data;
338 fun print_structures ctxt =
340 val structs = Data.get (Context.Proof ctxt);
341 fun pretty_term t = Pretty.block
342 [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1,
343 Pretty.str "::", Pretty.brk 1,
344 Pretty.quote (Syntax.pretty_typ ctxt (type_of t))];
345 fun pretty_struct ((s, ts), _) = Pretty.block
346 [Pretty.str s, Pretty.str ":", Pretty.brk 1,
347 Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
349 Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs))
355 fun struct_tac ((s, [eq, le, less]), thms) ctxt prems =
357 fun decomp thy (@{const Trueprop} $ t) =
360 (* exclude numeric types: linear arithmetic subsumes transitivity *)
361 let val T = type_of t
363 T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT
365 fun rel (bin_op $ t1 $ t2) =
366 if excluded t1 then NONE
367 else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2)
368 else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2)
369 else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2)
372 fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
374 | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
377 | decomp thy _ = NONE;
380 "order" => Order_Tac.partial_tac decomp thms ctxt prems
381 | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems
382 | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
385 fun order_tac ctxt prems =
386 FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt)));
391 fun add_struct_thm s tag =
392 Thm.declaration_attribute
393 (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm)));
395 Thm.declaration_attribute
396 (fn _ => Data.map (AList.delete struct_eq s));
399 Attrib.setup @{binding order}
400 (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --|
401 Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name --
402 Scan.repeat Args.term
403 >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag
404 | ((NONE, n), ts) => del_struct (n, ts)))
405 "theorems controlling transitivity reasoner";
408 (** Diagnostic command **)
411 Outer_Syntax.improper_command "print_orders"
412 "print order structures available to transitivity reasoner" Keyword.diag
413 (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o
414 Toplevel.keep (print_structures o Toplevel.context_of)));
420 Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt [])))
421 "transitivity reasoner" #>
431 text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
436 (* The type constraint on @{term op =} below is necessary since the operation
437 is not a parameter of the locale. *)
439 declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"]
441 declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"]
443 declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"]
445 declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"]
447 declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"]
449 declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"]
451 declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
453 declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
455 declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
457 declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
459 declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
461 declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
463 declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
465 declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
467 declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"]
474 declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]]
476 declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
478 declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
480 declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
482 declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
484 declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
486 declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
488 declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
490 declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
492 declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
494 declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
496 declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
498 declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
500 declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
502 declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
504 declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
506 declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
508 declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
510 declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
512 declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
520 fun prp t thm = Thm.prop_of thm = t; (* FIXME aconv!? *)
522 fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
523 let val prems = Simplifier.prems_of ss;
524 val less = Const (@{const_name less}, T);
525 val t = HOLogic.mk_Trueprop(le $ s $ r);
526 in case find_first (prp t) prems of
528 let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
529 in case find_first (prp t) prems of
531 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
533 | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
535 handle THM _ => NONE;
537 fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
538 let val prems = Simplifier.prems_of ss;
539 val le = Const (@{const_name less_eq}, T);
540 val t = HOLogic.mk_Trueprop(le $ r $ s);
541 in case find_first (prp t) prems of
543 let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
544 in case find_first (prp t) prems of
546 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
548 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
550 handle THM _ => NONE;
552 fun add_simprocs procs thy =
553 Simplifier.map_simpset_global (fn ss => ss
554 addsimprocs (map (fn (name, raw_ts, proc) =>
555 Simplifier.simproc_global thy name raw_ts proc) procs)) thy;
557 fun add_solver name tac =
558 Simplifier.map_simpset_global (fn ss => ss addSolver
559 mk_solver name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of ss)));
563 ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
564 ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
566 #> add_solver "Transitivity" Orders.order_tac
567 (* Adding the transitivity reasoners also as safe solvers showed a slight
568 speed up, but the reasoning strength appears to be not higher (at least
569 no breaking of additional proofs in the entire HOL distribution, as
570 of 5 March 2004, was observed). *)
575 subsection {* Bounded quantifiers *}
578 "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
579 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
580 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
581 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
583 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10)
584 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10)
585 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10)
586 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10)
589 "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
590 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
591 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
592 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
594 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
595 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
596 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
597 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
600 "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
601 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
602 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
603 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
606 "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
607 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
608 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
609 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
611 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
612 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
613 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
614 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
617 "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"
618 "EX x<y. P" => "EX x. x < y \<and> P"
619 "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"
620 "EX x<=y. P" => "EX x. x <= y \<and> P"
621 "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"
622 "EX x>y. P" => "EX x. x > y \<and> P"
623 "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"
624 "EX x>=y. P" => "EX x. x >= y \<and> P"
628 val All_binder = Mixfix.binder_name @{const_syntax All};
629 val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
630 val impl = @{const_syntax HOL.implies};
631 val conj = @{const_syntax HOL.conj};
632 val less = @{const_syntax less};
633 val less_eq = @{const_syntax less_eq};
636 [((All_binder, impl, less),
637 (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
638 ((All_binder, impl, less_eq),
639 (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
640 ((Ex_binder, conj, less),
641 (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
642 ((Ex_binder, conj, less_eq),
643 (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
645 fun matches_bound v t =
647 Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
649 fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false);
650 fun mk v c n P = Syntax.const c $ Syntax_Trans.mark_bound v $ n $ P;
653 fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _),
654 Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
655 (case AList.lookup (op =) trans (q, c, d) of
658 if matches_bound v t andalso not (contains_var v u) then mk v l u P
659 else if matches_bound v u andalso not (contains_var v t) then mk v g t P
662 in [tr' All_binder, tr' Ex_binder] end
666 subsection {* Transitivity reasoning *}
671 lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c"
674 lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
677 lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c"
680 lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c"
685 lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
686 (!!x y. x < y ==> f x < f y) ==> f a < c"
688 assume r: "!!x y. x < y ==> f x < f y"
689 assume "a < b" hence "f a < f b" by (rule r)
690 also assume "f b < c"
691 finally (less_trans) show ?thesis .
694 lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
695 (!!x y. x < y ==> f x < f y) ==> a < f c"
697 assume r: "!!x y. x < y ==> f x < f y"
699 also assume "b < c" hence "f b < f c" by (rule r)
700 finally (less_trans) show ?thesis .
703 lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
704 (!!x y. x <= y ==> f x <= f y) ==> f a < c"
706 assume r: "!!x y. x <= y ==> f x <= f y"
707 assume "a <= b" hence "f a <= f b" by (rule r)
708 also assume "f b < c"
709 finally (le_less_trans) show ?thesis .
712 lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
713 (!!x y. x < y ==> f x < f y) ==> a < f c"
715 assume r: "!!x y. x < y ==> f x < f y"
717 also assume "b < c" hence "f b < f c" by (rule r)
718 finally (le_less_trans) show ?thesis .
721 lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
722 (!!x y. x < y ==> f x < f y) ==> f a < c"
724 assume r: "!!x y. x < y ==> f x < f y"
725 assume "a < b" hence "f a < f b" by (rule r)
726 also assume "f b <= c"
727 finally (less_le_trans) show ?thesis .
730 lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
731 (!!x y. x <= y ==> f x <= f y) ==> a < f c"
733 assume r: "!!x y. x <= y ==> f x <= f y"
735 also assume "b <= c" hence "f b <= f c" by (rule r)
736 finally (less_le_trans) show ?thesis .
739 lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
740 (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
742 assume r: "!!x y. x <= y ==> f x <= f y"
744 also assume "b <= c" hence "f b <= f c" by (rule r)
745 finally (order_trans) show ?thesis .
748 lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
749 (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
751 assume r: "!!x y. x <= y ==> f x <= f y"
752 assume "a <= b" hence "f a <= f b" by (rule r)
753 also assume "f b <= c"
754 finally (order_trans) show ?thesis .
757 lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
758 (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
760 assume r: "!!x y. x <= y ==> f x <= f y"
761 assume "a <= b" hence "f a <= f b" by (rule r)
762 also assume "f b = c"
763 finally (ord_le_eq_trans) show ?thesis .
766 lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
767 (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
769 assume r: "!!x y. x <= y ==> f x <= f y"
771 also assume "b <= c" hence "f b <= f c" by (rule r)
772 finally (ord_eq_le_trans) show ?thesis .
775 lemma ord_less_eq_subst: "a < b ==> f b = c ==>
776 (!!x y. x < y ==> f x < f y) ==> f a < c"
778 assume r: "!!x y. x < y ==> f x < f y"
779 assume "a < b" hence "f a < f b" by (rule r)
780 also assume "f b = c"
781 finally (ord_less_eq_trans) show ?thesis .
784 lemma ord_eq_less_subst: "a = f b ==> b < c ==>
785 (!!x y. x < y ==> f x < f y) ==> a < f c"
787 assume r: "!!x y. x < y ==> f x < f y"
789 also assume "b < c" hence "f b < f c" by (rule r)
790 finally (ord_eq_less_trans) show ?thesis .
794 Note that this list of rules is in reverse order of priorities.
815 lemmas (in order) [trans] =
819 lemmas (in preorder) [trans] =
826 lemmas (in order) [trans] =
829 lemmas (in ord) [trans] =
838 lemmas order_trans_rules =
869 text {* These support proving chains of decreasing inequalities
870 a >= b >= c ... in Isar proofs. *}
873 "a = b ==> b > c ==> a > c"
874 "a > b ==> b = c ==> a > c"
875 "a = b ==> b >= c ==> a >= c"
876 "a >= b ==> b = c ==> a >= c"
877 "(x::'a::order) >= y ==> y >= x ==> x = y"
878 "(x::'a::order) >= y ==> y >= z ==> x >= z"
879 "(x::'a::order) > y ==> y >= z ==> x > z"
880 "(x::'a::order) >= y ==> y > z ==> x > z"
881 "(a::'a::order) > b ==> b > a ==> P"
882 "(x::'a::order) > y ==> y > z ==> x > z"
883 "(a::'a::order) >= b ==> a ~= b ==> a > b"
884 "(a::'a::order) ~= b ==> a >= b ==> a > b"
885 "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"
886 "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
887 "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
888 "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
892 "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
893 by (subgoal_tac "f b >= f c", force, force)
895 lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>
896 (!!x y. x >= y ==> f x >= f y) ==> f a >= c"
897 by (subgoal_tac "f a >= f b", force, force)
899 lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
900 (!!x y. x >= y ==> f x >= f y) ==> a > f c"
901 by (subgoal_tac "f b >= f c", force, force)
903 lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
904 (!!x y. x > y ==> f x > f y) ==> f a > c"
905 by (subgoal_tac "f a > f b", force, force)
907 lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==>
908 (!!x y. x > y ==> f x > f y) ==> a > f c"
909 by (subgoal_tac "f b > f c", force, force)
911 lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
912 (!!x y. x >= y ==> f x >= f y) ==> f a > c"
913 by (subgoal_tac "f a >= f b", force, force)
915 lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
916 (!!x y. x > y ==> f x > f y) ==> a > f c"
917 by (subgoal_tac "f b > f c", force, force)
919 lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
920 (!!x y. x > y ==> f x > f y) ==> f a > c"
921 by (subgoal_tac "f a > f b", force, force)
923 lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 [no_atp]
926 Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
927 for the wrong thing in an Isar proof.
929 The extra transitivity rules can be used as follows:
931 lemma "(a::'a::order) > z"
933 have "a >= b" (is "_ >= ?rhs")
935 also have "?rhs >= c" (is "_ >= ?rhs")
937 also (xtrans) have "?rhs = d" (is "_ = ?rhs")
939 also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
941 also (xtrans) have "?rhs > f" (is "_ > ?rhs")
943 also (xtrans) have "?rhs > z"
945 finally (xtrans) show ?thesis .
948 Alternatively, one can use "declare xtrans [trans]" and then
949 leave out the "(xtrans)" above.
953 subsection {* Monotonicity, least value operator and min/max *}
958 definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
959 "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"
961 lemma monoI [intro?]:
962 fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
963 shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"
964 unfolding mono_def by iprover
967 fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
968 shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
969 unfolding mono_def by iprover
971 definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
972 "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"
974 lemma strict_monoI [intro?]:
975 assumes "\<And>x y. x < y \<Longrightarrow> f x < f y"
976 shows "strict_mono f"
977 using assms unfolding strict_mono_def by auto
979 lemma strict_monoD [dest?]:
980 "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y"
981 unfolding strict_mono_def by auto
983 lemma strict_mono_mono [dest?]:
984 assumes "strict_mono f"
990 proof (cases "x = y")
991 case True then show ?thesis by simp
993 case False with `x \<le> y` have "x < y" by simp
994 with assms strict_monoD have "f x < f y" by auto
995 then show ?thesis by simp
1004 lemma strict_mono_eq:
1005 assumes "strict_mono f"
1006 shows "f x = f y \<longleftrightarrow> x = y"
1009 show "x = y" proof (cases x y rule: linorder_cases)
1010 case less with assms strict_monoD have "f x < f y" by auto
1011 with `f x = f y` show ?thesis by simp
1013 case equal then show ?thesis .
1015 case greater with assms strict_monoD have "f y < f x" by auto
1016 with `f x = f y` show ?thesis by simp
1020 lemma strict_mono_less_eq:
1021 assumes "strict_mono f"
1022 shows "f x \<le> f y \<longleftrightarrow> x \<le> y"
1025 with assms strict_mono_mono monoD show "f x \<le> f y" by auto
1027 assume "f x \<le> f y"
1028 show "x \<le> y" proof (rule ccontr)
1029 assume "\<not> x \<le> y" then have "y < x" by simp
1030 with assms strict_monoD have "f y < f x" by auto
1031 with `f x \<le> f y` show False by simp
1035 lemma strict_mono_less:
1036 assumes "strict_mono f"
1037 shows "f x < f y \<longleftrightarrow> x < y"
1039 by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)
1042 fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"
1043 shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)"
1044 by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym)
1047 fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"
1048 shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)"
1049 by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym)
1053 lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x"
1054 by (simp add: min_def)
1056 lemma max_absorb2: "x \<le> y ==> max x y = y"
1057 by (simp add: max_def)
1059 lemma min_absorb2: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> min x y = y"
1060 by (simp add:min_def)
1062 lemma max_absorb1: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> max x y = x"
1063 by (simp add: max_def)
1067 subsection {* (Unique) top and bottom elements *}
1070 fixes bot :: 'a ("\<bottom>")
1071 assumes bot_least [simp]: "\<bottom> \<le> a"
1075 "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>"
1076 by (auto intro: antisym)
1079 "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>"
1080 by (auto intro: antisym)
1082 lemma not_less_bot [simp]:
1083 "\<not> (a < \<bottom>)"
1084 using bot_least [of a] by (auto simp: le_less)
1087 "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a"
1088 by (auto simp add: less_le_not_le intro!: antisym)
1093 fixes top :: 'a ("\<top>")
1094 assumes top_greatest [simp]: "a \<le> \<top>"
1098 "\<top> \<le> a \<Longrightarrow> a = \<top>"
1099 by (rule antisym) auto
1102 "\<top> \<le> a \<longleftrightarrow> a = \<top>"
1103 by (auto intro: antisym)
1105 lemma not_top_less [simp]: "\<not> (\<top> < a)"
1106 using top_greatest [of a] by (auto simp: le_less)
1109 "a \<noteq> \<top> \<longleftrightarrow> a < \<top>"
1110 by (auto simp add: less_le_not_le intro!: antisym)
1115 subsection {* Dense orders *}
1117 class dense_linorder = linorder +
1118 assumes gt_ex: "\<exists>y. x < y"
1119 and lt_ex: "\<exists>y. y < x"
1120 and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)"
1125 assumes "\<And>x. x < y \<Longrightarrow> x \<le> z"
1128 assume "\<not> ?thesis"
1129 hence "z < y" by simp
1131 obtain x where "x < y" and "z < x" by safe
1132 moreover have "x \<le> z" using assms[OF `x < y`] .
1133 ultimately show False by auto
1136 lemma dense_le_bounded:
1139 assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z"
1141 proof (rule dense_le)
1142 fix w assume "w < y"
1143 from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe
1148 from less_le_trans[OF `x < u` `u \<le> w`] `w < y`
1149 show "w \<le> z" by (rule *)
1152 from `w \<le> u` *[OF `x < u` `u < y`]
1153 show "w \<le> z" by (rule order_trans)
1159 subsection {* Wellorders *}
1161 class wellorder = linorder +
1162 assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a"
1165 lemma wellorder_Least_lemma:
1168 shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k"
1170 have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k"
1171 using assms proof (induct k rule: less_induct)
1172 case (less x) then have "P x" by simp
1173 show ?case proof (rule classical)
1174 assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)"
1175 have "\<And>y. P y \<Longrightarrow> x \<le> y"
1176 proof (rule classical)
1178 assume "P y" and "\<not> x \<le> y"
1179 with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
1180 by (auto simp add: not_le)
1181 with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
1183 then show "x \<le> y" by auto
1185 with `P x` have Least: "(LEAST a. P a) = x"
1186 by (rule Least_equality)
1187 with `P x` show ?thesis by simp
1190 then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto
1193 -- "The following 3 lemmas are due to Brian Huffman"
1194 lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)"
1195 by (erule exE) (erule LeastI)
1198 "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
1199 by (blast intro: LeastI)
1202 "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
1203 by (blast intro: LeastI_ex)
1205 lemma LeastI2_wellorder:
1207 and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a"
1209 proof (rule LeastI2_order)
1210 show "P (Least P)" using `P a` by (rule LeastI)
1212 fix y assume "P y" thus "Least P \<le> y" by (rule Least_le)
1214 fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2))
1217 lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k"
1218 apply (simp (no_asm_use) add: not_le [symmetric])
1219 apply (erule contrapos_nn)
1220 apply (erule Least_le)
1226 subsection {* Order on @{typ bool} *}
1228 instantiation bool :: "{bot, top, linorder}"
1232 le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q"
1235 [simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q"
1238 [simp]: "\<bottom> \<longleftrightarrow> False"
1241 [simp]: "\<top> \<longleftrightarrow> True"
1248 lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
1251 lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
1254 lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
1257 lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
1260 lemma bot_boolE: "\<bottom> \<Longrightarrow> P"
1263 lemma top_boolI: \<top>
1267 "False \<le> b \<longleftrightarrow> True"
1268 "True \<le> b \<longleftrightarrow> b"
1269 "False < b \<longleftrightarrow> b"
1270 "True < b \<longleftrightarrow> False"
1274 subsection {* Order on @{typ "_ \<Rightarrow> _"} *}
1276 instantiation "fun" :: (type, ord) ord
1280 le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)"
1283 "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)"
1289 instance "fun" :: (type, preorder) preorder proof
1290 qed (auto simp add: le_fun_def less_fun_def
1291 intro: order_trans antisym)
1293 instance "fun" :: (type, order) order proof
1294 qed (auto simp add: le_fun_def intro: antisym)
1296 instantiation "fun" :: (type, bot) bot
1300 "\<bottom> = (\<lambda>x. \<bottom>)"
1302 lemma bot_apply [simp] (* CANDIDATE [code] *):
1303 "\<bottom> x = \<bottom>"
1304 by (simp add: bot_fun_def)
1307 qed (simp add: le_fun_def bot_apply)
1311 instantiation "fun" :: (type, top) top
1315 [no_atp]: "\<top> = (\<lambda>x. \<top>)"
1316 declare top_fun_def_raw [no_atp]
1318 lemma top_apply [simp] (* CANDIDATE [code] *):
1320 by (simp add: top_fun_def)
1323 qed (simp add: le_fun_def top_apply)
1327 lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"
1328 unfolding le_fun_def by simp
1330 lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"
1331 unfolding le_fun_def by simp
1333 lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"
1334 unfolding le_fun_def by simp
1337 subsection {* Order on unary and binary predicates *}
1340 assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
1342 apply (rule le_funI)
1343 apply (rule le_boolI)
1349 "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"
1350 apply (erule le_funE)
1351 apply (erule le_boolE)
1355 lemma rev_predicate1D:
1356 "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x"
1357 by (rule predicate1D)
1360 assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"
1362 apply (rule le_funI)+
1363 apply (rule le_boolI)
1369 "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"
1370 apply (erule le_funE)+
1371 apply (erule le_boolE)
1375 lemma rev_predicate2D:
1376 "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y"
1377 by (rule predicate2D)
1379 lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P"
1380 by (simp add: bot_fun_def)
1382 lemma bot2E: "\<bottom> x y \<Longrightarrow> P"
1383 by (simp add: bot_fun_def)
1385 lemma top1I: "\<top> x"
1386 by (simp add: top_fun_def)
1388 lemma top2I: "\<top> x y"
1389 by (simp add: top_fun_def)
1392 subsection {* Name duplicates *}
1394 lemmas order_eq_refl = preorder_class.eq_refl
1395 lemmas order_less_irrefl = preorder_class.less_irrefl
1396 lemmas order_less_imp_le = preorder_class.less_imp_le
1397 lemmas order_less_not_sym = preorder_class.less_not_sym
1398 lemmas order_less_asym = preorder_class.less_asym
1399 lemmas order_less_trans = preorder_class.less_trans
1400 lemmas order_le_less_trans = preorder_class.le_less_trans
1401 lemmas order_less_le_trans = preorder_class.less_le_trans
1402 lemmas order_less_imp_not_less = preorder_class.less_imp_not_less
1403 lemmas order_less_imp_triv = preorder_class.less_imp_triv
1404 lemmas order_less_asym' = preorder_class.less_asym'
1406 lemmas order_less_le = order_class.less_le
1407 lemmas order_le_less = order_class.le_less
1408 lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq
1409 lemmas order_less_imp_not_eq = order_class.less_imp_not_eq
1410 lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2
1411 lemmas order_neq_le_trans = order_class.neq_le_trans
1412 lemmas order_le_neq_trans = order_class.le_neq_trans
1413 lemmas order_antisym = order_class.antisym
1414 lemmas order_eq_iff = order_class.eq_iff
1415 lemmas order_antisym_conv = order_class.antisym_conv
1417 lemmas linorder_linear = linorder_class.linear
1418 lemmas linorder_less_linear = linorder_class.less_linear
1419 lemmas linorder_le_less_linear = linorder_class.le_less_linear
1420 lemmas linorder_le_cases = linorder_class.le_cases
1421 lemmas linorder_not_less = linorder_class.not_less
1422 lemmas linorder_not_le = linorder_class.not_le
1423 lemmas linorder_neq_iff = linorder_class.neq_iff
1424 lemmas linorder_neqE = linorder_class.neqE
1425 lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
1426 lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
1427 lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3