src/ZF/IMP/Denotation.thy
author blanchet
Tue, 17 Feb 2009 14:01:54 +0100
changeset 29956 62f931b257b7
parent 21404 eb85850d3eb7
child 35762 af3ff2ba4c54
permissions -rw-r--r--
Reintroduce set_interpreter for Collect and op :. I removed them by accident when removing old code that dealt with the "set" type. Incidentally, there is still some broken "set" code in Refute that should be fixed (see TODO in refute.ML).

(*  Title:      ZF/IMP/Denotation.thy
    ID:         $Id$
    Author:     Heiko Loetzbeyer and Robert Sandner, TU München
*)

header {* Denotational semantics of expressions and commands *}

theory Denotation imports Com begin

subsection {* Definitions *}

consts
  A     :: "i => i => i"
  B     :: "i => i => i"
  C     :: "i => i"

definition
  Gamma :: "[i,i,i] => i"  ("\<Gamma>") where
  "\<Gamma>(b,cden) ==
    (\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
           {io \<in> id(loc->nat). B(b,fst(io))=0})"

primrec
  "A(N(n), sigma) = n"
  "A(X(x), sigma) = sigma`x"
  "A(Op1(f,a), sigma) = f`A(a,sigma)"
  "A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"

primrec
  "B(true, sigma) = 1"
  "B(false, sigma) = 0"
  "B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
  "B(noti(b), sigma) = not(B(b,sigma))"
  "B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
  "B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"

primrec
  "C(\<SKIP>) = id(loc->nat)"
  "C(x \<ASSN> a) =
    {io \<in> (loc->nat) \<times> (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
  "C(c0\<SEQ> c1) = C(c1) O C(c0)"
  "C(\<IF> b \<THEN> c0 \<ELSE> c1) =
    {io \<in> C(c0). B(b,fst(io)) = 1} \<union> {io \<in> C(c1). B(b,fst(io)) = 0}"
  "C(\<WHILE> b \<DO> c) = lfp((loc->nat) \<times> (loc->nat), \<Gamma>(b,C(c)))"


subsection {* Misc lemmas *}

lemma A_type [TC]: "[|a \<in> aexp; sigma \<in> loc->nat|] ==> A(a,sigma) \<in> nat"
  by (erule aexp.induct) simp_all

lemma B_type [TC]: "[|b \<in> bexp; sigma \<in> loc->nat|] ==> B(b,sigma) \<in> bool"
by (erule bexp.induct, simp_all)

lemma C_subset: "c \<in> com ==> C(c) \<subseteq> (loc->nat) \<times> (loc->nat)"
  apply (erule com.induct)
      apply simp_all
      apply (blast dest: lfp_subset [THEN subsetD])+
  done

lemma C_type_D [dest]:
    "[| <x,y> \<in> C(c); c \<in> com |] ==> x \<in> loc->nat & y \<in> loc->nat"
  by (blast dest: C_subset [THEN subsetD])

lemma C_type_fst [dest]: "[| x \<in> C(c); c \<in> com |] ==> fst(x) \<in> loc->nat"
  by (auto dest!: C_subset [THEN subsetD])

lemma Gamma_bnd_mono:
  "cden \<subseteq> (loc->nat) \<times> (loc->nat)
    ==> bnd_mono ((loc->nat) \<times> (loc->nat), \<Gamma>(b,cden))"
  by (unfold bnd_mono_def Gamma_def) blast

end