Reintroduce set_interpreter for Collect and op :.
I removed them by accident when removing old code that dealt with the "set" type.
Incidentally, there is still some broken "set" code in Refute that should be fixed (see TODO in refute.ML).
(* Title: ZF/IMP/Denotation.thy
ID: $Id$
Author: Heiko Loetzbeyer and Robert Sandner, TU München
*)
header {* Denotational semantics of expressions and commands *}
theory Denotation imports Com begin
subsection {* Definitions *}
consts
A :: "i => i => i"
B :: "i => i => i"
C :: "i => i"
definition
Gamma :: "[i,i,i] => i" ("\<Gamma>") where
"\<Gamma>(b,cden) ==
(\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
{io \<in> id(loc->nat). B(b,fst(io))=0})"
primrec
"A(N(n), sigma) = n"
"A(X(x), sigma) = sigma`x"
"A(Op1(f,a), sigma) = f`A(a,sigma)"
"A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
primrec
"B(true, sigma) = 1"
"B(false, sigma) = 0"
"B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
"B(noti(b), sigma) = not(B(b,sigma))"
"B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
"B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"
primrec
"C(\<SKIP>) = id(loc->nat)"
"C(x \<ASSN> a) =
{io \<in> (loc->nat) \<times> (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
"C(c0\<SEQ> c1) = C(c1) O C(c0)"
"C(\<IF> b \<THEN> c0 \<ELSE> c1) =
{io \<in> C(c0). B(b,fst(io)) = 1} \<union> {io \<in> C(c1). B(b,fst(io)) = 0}"
"C(\<WHILE> b \<DO> c) = lfp((loc->nat) \<times> (loc->nat), \<Gamma>(b,C(c)))"
subsection {* Misc lemmas *}
lemma A_type [TC]: "[|a \<in> aexp; sigma \<in> loc->nat|] ==> A(a,sigma) \<in> nat"
by (erule aexp.induct) simp_all
lemma B_type [TC]: "[|b \<in> bexp; sigma \<in> loc->nat|] ==> B(b,sigma) \<in> bool"
by (erule bexp.induct, simp_all)
lemma C_subset: "c \<in> com ==> C(c) \<subseteq> (loc->nat) \<times> (loc->nat)"
apply (erule com.induct)
apply simp_all
apply (blast dest: lfp_subset [THEN subsetD])+
done
lemma C_type_D [dest]:
"[| <x,y> \<in> C(c); c \<in> com |] ==> x \<in> loc->nat & y \<in> loc->nat"
by (blast dest: C_subset [THEN subsetD])
lemma C_type_fst [dest]: "[| x \<in> C(c); c \<in> com |] ==> fst(x) \<in> loc->nat"
by (auto dest!: C_subset [THEN subsetD])
lemma Gamma_bnd_mono:
"cden \<subseteq> (loc->nat) \<times> (loc->nat)
==> bnd_mono ((loc->nat) \<times> (loc->nat), \<Gamma>(b,cden))"
by (unfold bnd_mono_def Gamma_def) blast
end