(* Title: HOL/Fun_Def.thy
Author: Alexander Krauss, TU Muenchen
*)
section \<open>Function Definitions and Termination Proofs\<close>
theory Fun_Def
imports Basic_BNF_LFPs Partial_Function SAT
keywords
"function" "termination" :: thy_goal_defn and
"fun" "fun_cases" :: thy_defn
begin
subsection \<open>Definitions with default value\<close>
definition THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a"
where "THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
by (simp add: theI' THE_default_def)
lemma THE_default1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> THE_default d P = a"
by (simp add: the1_equality THE_default_def)
lemma THE_default_none: "\<not> (\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
by (simp add: THE_default_def)
lemma fundef_ex1_existence:
assumes f_def: "f \<equiv> (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "G x (f x)"
apply (simp only: f_def)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_ex1_uniqueness:
assumes f_def: "f \<equiv> (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
assumes elm: "G x (h x)"
shows "h x = f x"
apply (simp only: f_def)
apply (rule THE_default1_equality [symmetric])
apply (rule ex1)
apply (rule elm)
done
lemma fundef_ex1_iff:
assumes f_def: "f \<equiv> (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "(G x y) = (f x = y)"
apply (auto simp:ex1 f_def THE_default1_equality)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_default_value:
assumes f_def: "f \<equiv> (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
assumes "\<not> D x"
shows "f x = d x"
proof -
have "\<not>(\<exists>y. G x y)"
proof
assume "\<exists>y. G x y"
then have "D x" using graph ..
with \<open>\<not> D x\<close> show False ..
qed
then have "\<not>(\<exists>!y. G x y)" by blast
then show ?thesis
unfolding f_def by (rule THE_default_none)
qed
definition in_rel_def[simp]: "in_rel R x y \<equiv> (x, y) \<in> R"
lemma wf_in_rel: "wf R \<Longrightarrow> wfP (in_rel R)"
by (simp add: wfP_def)
ML_file \<open>Tools/Function/function_core.ML\<close>
ML_file \<open>Tools/Function/mutual.ML\<close>
ML_file \<open>Tools/Function/pattern_split.ML\<close>
ML_file \<open>Tools/Function/relation.ML\<close>
ML_file \<open>Tools/Function/function_elims.ML\<close>
method_setup relation = \<open>
Args.term >> (fn t => fn ctxt => SIMPLE_METHOD' (Function_Relation.relation_infer_tac ctxt t))
\<close> "prove termination using a user-specified wellfounded relation"
ML_file \<open>Tools/Function/function.ML\<close>
ML_file \<open>Tools/Function/pat_completeness.ML\<close>
method_setup pat_completeness = \<open>
Scan.succeed (SIMPLE_METHOD' o Pat_Completeness.pat_completeness_tac)
\<close> "prove completeness of (co)datatype patterns"
ML_file \<open>Tools/Function/fun.ML\<close>
ML_file \<open>Tools/Function/induction_schema.ML\<close>
method_setup induction_schema = \<open>
Scan.succeed (CONTEXT_TACTIC oo Induction_Schema.induction_schema_tac)
\<close> "prove an induction principle"
subsection \<open>Measure functions\<close>
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
where is_measure_trivial: "is_measure f"
named_theorems measure_function "rules that guide the heuristic generation of measure functions"
ML_file \<open>Tools/Function/measure_functions.ML\<close>
lemma measure_size[measure_function]: "is_measure size"
by (rule is_measure_trivial)
lemma measure_fst[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
by (rule is_measure_trivial)
lemma measure_snd[measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
by (rule is_measure_trivial)
ML_file \<open>Tools/Function/lexicographic_order.ML\<close>
method_setup lexicographic_order = \<open>
Method.sections clasimp_modifiers >>
(K (SIMPLE_METHOD o Lexicographic_Order.lexicographic_order_tac false))
\<close> "termination prover for lexicographic orderings"
subsection \<open>Congruence rules\<close>
lemma let_cong [fundef_cong]: "M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
unfolding Let_def by blast
lemmas [fundef_cong] =
if_cong image_cong
bex_cong ball_cong imp_cong map_option_cong Option.bind_cong
lemma split_cong [fundef_cong]:
"(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q \<Longrightarrow> case_prod f p = case_prod g q"
by (auto simp: split_def)
lemma comp_cong [fundef_cong]: "f (g x) = f' (g' x') \<Longrightarrow> (f \<circ> g) x = (f' \<circ> g') x'"
by (simp only: o_apply)
subsection \<open>Simp rules for termination proofs\<close>
declare
trans_less_add1[termination_simp]
trans_less_add2[termination_simp]
trans_le_add1[termination_simp]
trans_le_add2[termination_simp]
less_imp_le_nat[termination_simp]
le_imp_less_Suc[termination_simp]
lemma size_prod_simp[termination_simp]: "size_prod f g p = f (fst p) + g (snd p) + Suc 0"
by (induct p) auto
subsection \<open>Decomposition\<close>
lemma less_by_empty: "A = {} \<Longrightarrow> A \<subseteq> B"
and union_comp_emptyL: "A O C = {} \<Longrightarrow> B O C = {} \<Longrightarrow> (A \<union> B) O C = {}"
and union_comp_emptyR: "A O B = {} \<Longrightarrow> A O C = {} \<Longrightarrow> A O (B \<union> C) = {}"
and wf_no_loop: "R O R = {} \<Longrightarrow> wf R"
by (auto simp add: wf_comp_self [of R])
subsection \<open>Reduction pairs\<close>
definition "reduction_pair P \<longleftrightarrow> wf (fst P) \<and> fst P O snd P \<subseteq> fst P"
lemma reduction_pairI[intro]: "wf R \<Longrightarrow> R O S \<subseteq> R \<Longrightarrow> reduction_pair (R, S)"
by (auto simp: reduction_pair_def)
lemma reduction_pair_lemma:
assumes rp: "reduction_pair P"
assumes "R \<subseteq> fst P"
assumes "S \<subseteq> snd P"
assumes "wf S"
shows "wf (R \<union> S)"
proof -
from rp \<open>S \<subseteq> snd P\<close> have "wf (fst P)" "fst P O S \<subseteq> fst P"
unfolding reduction_pair_def by auto
with \<open>wf S\<close> have "wf (fst P \<union> S)"
by (auto intro: wf_union_compatible)
moreover from \<open>R \<subseteq> fst P\<close> have "R \<union> S \<subseteq> fst P \<union> S" by auto
ultimately show ?thesis by (rule wf_subset)
qed
definition "rp_inv_image = (\<lambda>(R,S) f. (inv_image R f, inv_image S f))"
lemma rp_inv_image_rp: "reduction_pair P \<Longrightarrow> reduction_pair (rp_inv_image P f)"
unfolding reduction_pair_def rp_inv_image_def split_def by force
subsection \<open>Concrete orders for SCNP termination proofs\<close>
definition "pair_less = less_than <*lex*> less_than"
definition "pair_leq = pair_less\<^sup>="
definition "max_strict = max_ext pair_less"
definition "max_weak = max_ext pair_leq \<union> {({}, {})}"
definition "min_strict = min_ext pair_less"
definition "min_weak = min_ext pair_leq \<union> {({}, {})}"
lemma wf_pair_less[simp]: "wf pair_less"
by (auto simp: pair_less_def)
lemma total_pair_less [iff]: "total_on A pair_less" and trans_pair_less [iff]: "trans pair_less"
by (auto simp: total_on_def pair_less_def)
text \<open>Introduction rules for \<open>pair_less\<close>/\<open>pair_leq\<close>\<close>
lemma pair_leqI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
and pair_leqI2: "a \<le> b \<Longrightarrow> s \<le> t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_leq"
and pair_lessI1: "a < b \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
and pair_lessI2: "a \<le> b \<Longrightarrow> s < t \<Longrightarrow> ((a, s), (b, t)) \<in> pair_less"
by (auto simp: pair_leq_def pair_less_def)
lemma pair_less_iff1 [simp]: "((x,y), (x,z)) \<in> pair_less \<longleftrightarrow> y<z"
by (simp add: pair_less_def)
text \<open>Introduction rules for max\<close>
lemma smax_emptyI: "finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> ({}, Y) \<in> max_strict"
and smax_insertI:
"y \<in> Y \<Longrightarrow> (x, y) \<in> pair_less \<Longrightarrow> (X, Y) \<in> max_strict \<Longrightarrow> (insert x X, Y) \<in> max_strict"
and wmax_emptyI: "finite X \<Longrightarrow> ({}, X) \<in> max_weak"
and wmax_insertI:
"y \<in> YS \<Longrightarrow> (x, y) \<in> pair_leq \<Longrightarrow> (XS, YS) \<in> max_weak \<Longrightarrow> (insert x XS, YS) \<in> max_weak"
by (auto simp: max_strict_def max_weak_def elim!: max_ext.cases)
text \<open>Introduction rules for min\<close>
lemma smin_emptyI: "X \<noteq> {} \<Longrightarrow> (X, {}) \<in> min_strict"
and smin_insertI:
"x \<in> XS \<Longrightarrow> (x, y) \<in> pair_less \<Longrightarrow> (XS, YS) \<in> min_strict \<Longrightarrow> (XS, insert y YS) \<in> min_strict"
and wmin_emptyI: "(X, {}) \<in> min_weak"
and wmin_insertI:
"x \<in> XS \<Longrightarrow> (x, y) \<in> pair_leq \<Longrightarrow> (XS, YS) \<in> min_weak \<Longrightarrow> (XS, insert y YS) \<in> min_weak"
by (auto simp: min_strict_def min_weak_def min_ext_def)
text \<open>Reduction Pairs.\<close>
lemma max_ext_compat:
assumes "R O S \<subseteq> R"
shows "max_ext R O (max_ext S \<union> {({}, {})}) \<subseteq> max_ext R"
using assms
apply auto
apply (elim max_ext.cases)
apply rule
apply auto[3]
apply (drule_tac x=xa in meta_spec)
apply simp
apply (erule bexE)
apply (drule_tac x=xb in meta_spec)
apply auto
done
lemma max_rpair_set: "reduction_pair (max_strict, max_weak)"
unfolding max_strict_def max_weak_def
apply (intro reduction_pairI max_ext_wf)
apply simp
apply (rule max_ext_compat)
apply (auto simp: pair_less_def pair_leq_def)
done
lemma min_ext_compat:
assumes "R O S \<subseteq> R"
shows "min_ext R O (min_ext S \<union> {({},{})}) \<subseteq> min_ext R"
using assms
apply (auto simp: min_ext_def)
apply (drule_tac x=ya in bspec, assumption)
apply (erule bexE)
apply (drule_tac x=xc in bspec)
apply assumption
apply auto
done
lemma min_rpair_set: "reduction_pair (min_strict, min_weak)"
unfolding min_strict_def min_weak_def
apply (intro reduction_pairI min_ext_wf)
apply simp
apply (rule min_ext_compat)
apply (auto simp: pair_less_def pair_leq_def)
done
subsection \<open>Yet another induction principle on the natural numbers\<close>
lemma nat_descend_induct [case_names base descend]:
fixes P :: "nat \<Rightarrow> bool"
assumes H1: "\<And>k. k > n \<Longrightarrow> P k"
assumes H2: "\<And>k. k \<le> n \<Longrightarrow> (\<And>i. i > k \<Longrightarrow> P i) \<Longrightarrow> P k"
shows "P m"
using assms by induction_schema (force intro!: wf_measure [of "\<lambda>k. Suc n - k"])+
subsection \<open>Tool setup\<close>
ML_file \<open>Tools/Function/termination.ML\<close>
ML_file \<open>Tools/Function/scnp_solve.ML\<close>
ML_file \<open>Tools/Function/scnp_reconstruct.ML\<close>
ML_file \<open>Tools/Function/fun_cases.ML\<close>
ML_val \<comment> \<open>setup inactive\<close>
\<open>
Context.theory_map (Function_Common.set_termination_prover
(K (ScnpReconstruct.decomp_scnp_tac [ScnpSolve.MAX, ScnpSolve.MIN, ScnpSolve.MS])))
\<close>
end