conclude_goal: precise goal context, include all sorts from context into statement, check shyps of result;
(* Title: Provers/Arith/abel_cancel.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Simplification procedures for abelian groups (e.g. integers, reals,
polymorphic types).
- Cancel complementary terms in sums
- Cancel like terms on opposite sides of relations
*)
signature ABEL_CANCEL =
sig
val eq_reflection : thm (*object-equality to meta-equality*)
val T : typ (*the type of group elements*)
val cancel_ss : simpset (*abelian group cancel simpset*)
val sum_pats : cterm list
val eqI_rules : thm list
val dest_eqI : thm -> term
end;
functor Abel_Cancel (Data: ABEL_CANCEL) =
struct
open Data;
(* FIXME dependent on abstract syntax *)
fun zero t = Const (@{const_name HOL.zero}, t);
fun minus t = Const (@{const_name HOL.uminus}, t --> t);
fun add_terms pos (Const (@{const_name HOL.plus}, _) $ x $ y, ts) =
add_terms pos (x, add_terms pos (y, ts))
| add_terms pos (Const (@{const_name HOL.minus}, _) $ x $ y, ts) =
add_terms pos (x, add_terms (not pos) (y, ts))
| add_terms pos (Const (@{const_name HOL.uminus}, _) $ x, ts) =
add_terms (not pos) (x, ts)
| add_terms pos (x, ts) = (pos,x) :: ts;
fun terms fml = add_terms true (fml, []);
fun zero1 pt (u as (c as Const(@{const_name HOL.plus},_)) $ x $ y) =
(case zero1 pt x of NONE => (case zero1 pt y of NONE => NONE
| SOME z => SOME(c $ x $ z))
| SOME z => SOME(c $ z $ y))
| zero1 (pos,t) (u as (c as Const(@{const_name HOL.minus},_)) $ x $ y) =
(case zero1 (pos,t) x of
NONE => (case zero1 (not pos,t) y of NONE => NONE
| SOME z => SOME(c $ x $ z))
| SOME z => SOME(c $ z $ y))
| zero1 (pos,t) (u as (c as Const(@{const_name HOL.uminus},_)) $ x) =
(case zero1 (not pos,t) x of NONE => NONE
| SOME z => SOME(c $ z))
| zero1 (pos,t) u =
if pos andalso (t aconv u) then SOME(zero(fastype_of t)) else NONE
exception Cancel;
fun find_common _ [] _ = raise Cancel
| find_common opp ((p,l)::ls) rs =
let val pr = if opp then not p else p
in if exists (fn (q,r) => pr = q andalso l aconv r) rs then (p,l)
else find_common opp ls rs
end
(* turns t1(t) OP t2(t) into t1(0) OP t2(0) where OP can be +, -, =, etc.
If OP = +, it must be t2(-t) rather than t2(t)
*)
fun cancel t =
let
val c $ lhs $ rhs = t
val opp = case c of Const(@{const_name HOL.plus},_) => true | _ => false;
val (pos,l) = find_common opp (terms lhs) (terms rhs)
val posr = if opp then not pos else pos
val t' = c $ (the(zero1 (pos,l) lhs)) $ (the(zero1 (posr,l) rhs))
in t' end;
(*A simproc to cancel complementary terms in arbitrary sums.*)
fun sum_proc ss t =
let
val t' = cancel t
val thm =
Goal.prove (Simplifier.the_context ss) [] [] (Logic.mk_equals (t, t'))
(fn _ => simp_tac (Simplifier.inherit_context ss cancel_ss) 1)
in SOME thm end handle Cancel => NONE;
val sum_conv =
Simplifier.mk_simproc "cancel_sums"
(map (Drule.cterm_fun Logic.varify) Data.sum_pats) (K sum_proc);
(*A simproc to cancel like terms on the opposite sides of relations:
(x + y - z < -z + x) = (y < 0)
Works for (=) and (<=) as well as (<), if the necessary rules are supplied.
Reduces the problem to subtraction.*)
fun rel_proc ss t =
let
val t' = cancel t
val thm = Goal.prove (Simplifier.the_context ss) [] [] (Logic.mk_equals (t, t'))
(fn _ => rtac eq_reflection 1 THEN
resolve_tac eqI_rules 1 THEN
simp_tac (Simplifier.inherit_context ss cancel_ss) 1)
in SOME thm end handle Cancel => NONE;
val rel_conv =
Simplifier.mk_simproc "cancel_relations"
(map (fn th => Thm.cterm_of (Thm.theory_of_thm th) (Data.dest_eqI th)) eqI_rules) (K rel_proc);
end;