theory Rewrite_Examples
imports Main "~~/src/HOL/Library/Rewrite"
begin
section \<open>The rewrite Proof Method by Example\<close>
(* This file is intended to give an overview over
the features of the pattern-based rewrite proof method.
See also https://www21.in.tum.de/~noschinl/Pattern-2014/
*)
lemma
fixes a::int and b::int and c::int
assumes "P (b + a)"
shows "P (a + b)"
by (rewrite at "a + b" add.commute)
(rule assms)
(* Selecting a specific subterm in a large, ambiguous term. *)
lemma
fixes a b c :: int
assumes "f (a - a + (a - a)) + f ( 0 + c) = f 0 + f c"
shows "f (a - a + (a - a)) + f ((a - a) + c) = f 0 + f c"
by (rewrite in "f _ + f \<hole> = _" diff_self) fact
lemma
fixes a b c :: int
assumes "f (a - a + 0 ) + f ((a - a) + c) = f 0 + f c"
shows "f (a - a + (a - a)) + f ((a - a) + c) = f 0 + f c"
by (rewrite at "f (_ + \<hole>) + f _ = _" diff_self) fact
lemma
fixes a b c :: int
assumes "f ( 0 + (a - a)) + f ((a - a) + c) = f 0 + f c"
shows "f (a - a + (a - a)) + f ((a - a) + c) = f 0 + f c"
by (rewrite in "f (\<hole> + _) + _ = _" diff_self) fact
lemma
fixes a b c :: int
assumes "f (a - a + 0 ) + f ((a - a) + c) = f 0 + f c"
shows "f (a - a + (a - a)) + f ((a - a) + c) = f 0 + f c"
by (rewrite in "f (_ + \<hole>) + _ = _" diff_self) fact
lemma
fixes x y :: nat
shows"x + y > c \<Longrightarrow> y + x > c"
by (rewrite at "\<hole> > c" add.commute) assumption
(* We can also rewrite in the assumptions. *)
lemma
fixes x y :: nat
assumes "y + x > c \<Longrightarrow> y + x > c"
shows "x + y > c \<Longrightarrow> y + x > c"
by (rewrite in asm add.commute) fact
lemma
fixes x y :: nat
assumes "y + x > c \<Longrightarrow> y + x > c"
shows "x + y > c \<Longrightarrow> y + x > c"
by (rewrite in "x + y > c" at asm add.commute) fact
lemma
fixes x y :: nat
assumes "y + x > c \<Longrightarrow> y + x > c"
shows "x + y > c \<Longrightarrow> y + x > c"
by (rewrite at "\<hole> > c" at asm add.commute) fact
lemma
assumes "P {x::int. y + 1 = 1 + x}"
shows "P {x::int. y + 1 = x + 1}"
by (rewrite at "x+1" in "{x::int. \<hole> }" add.commute) fact
lemma
assumes "P {x::int. y + 1 = 1 + x}"
shows "P {x::int. y + 1 = x + 1}"
by (rewrite at "any_identifier_will_work+1" in "{any_identifier_will_work::int. \<hole> }" add.commute)
fact
lemma
assumes "P {(x::nat, y::nat, z). x + z * 3 = Q (\<lambda>s t. s * t + y - 3)}"
shows "P {(x::nat, y::nat, z). x + z * 3 = Q (\<lambda>s t. y + s * t - 3)}"
by (rewrite at "b + d * e" in "\<lambda>(a, b, c). _ = Q (\<lambda>d e. \<hole>)" add.commute) fact
(* This is not limited to the first assumption *)
lemma
assumes "PROP P \<equiv> PROP Q"
shows "PROP R \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"
by (rewrite at asm assms)
lemma
assumes "PROP P \<equiv> PROP Q"
shows "PROP R \<Longrightarrow> PROP R \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"
by (rewrite at asm assms)
(* Rewriting "at asm" selects each full assumption, not any parts *)
lemma
assumes "(PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP S \<Longrightarrow> PROP R)"
shows "PROP S \<Longrightarrow> (PROP P \<Longrightarrow> PROP Q) \<Longrightarrow> PROP R"
apply (rewrite at asm assms)
apply assumption
done
(* Rewriting with conditional rewriting rules works just as well. *)
lemma test_theorem:
fixes x :: nat
shows "x \<le> y \<Longrightarrow> x \<ge> y \<Longrightarrow> x = y"
by (rule Orderings.order_antisym)
(* Premises of the conditional rule yield new subgoals. The
assumptions of the goal are propagated into these subgoals
*)
lemma
fixes f :: "nat \<Rightarrow> nat"
shows "f x \<le> 0 \<Longrightarrow> f x \<ge> 0 \<Longrightarrow> f x = 0"
apply (rewrite at "f x" to "0" test_theorem)
apply assumption
apply assumption
apply (rule refl)
done
(* This holds also for rewriting in assumptions. The order of assumptions is preserved *)
lemma
assumes rewr: "PROP P \<Longrightarrow> PROP Q \<Longrightarrow> PROP R \<equiv> PROP R'"
assumes A1: "PROP S \<Longrightarrow> PROP T \<Longrightarrow> PROP U \<Longrightarrow> PROP P"
assumes A2: "PROP S \<Longrightarrow> PROP T \<Longrightarrow> PROP U \<Longrightarrow> PROP Q"
assumes C: "PROP S \<Longrightarrow> PROP R' \<Longrightarrow> PROP T \<Longrightarrow> PROP U \<Longrightarrow> PROP V"
shows "PROP S \<Longrightarrow> PROP R \<Longrightarrow> PROP T \<Longrightarrow> PROP U \<Longrightarrow> PROP V"
apply (rewrite at asm rewr)
apply (fact A1)
apply (fact A2)
apply (fact C)
done
(*
Instantiation.
Since all rewriting is now done via conversions,
instantiation becomes fairly easy to do.
*)
(* We first introduce a function f and an extended
version of f that is annotated with an invariant. *)
fun f :: "nat \<Rightarrow> nat" where "f n = n"
definition "f_inv (I :: nat \<Rightarrow> bool) n \<equiv> f n"
lemma annotate_f: "f = f_inv I"
by (simp add: f_inv_def fun_eq_iff)
(* We have a lemma with a bound variable n, and
want to add an invariant to f. *)
lemma
assumes "P (\<lambda>n. f_inv (\<lambda>_. True) n + 1) = x"
shows "P (\<lambda>n. f n + 1) = x"
by (rewrite to "f_inv (\<lambda>_. True)" annotate_f) fact
(* We can also add an invariant that contains the variable n bound in the outer context.
For this, we need to bind this variable to an identifier. *)
lemma
assumes "P (\<lambda>n. f_inv (\<lambda>x. n < x + 1) n + 1) = x"
shows "P (\<lambda>n. f n + 1) = x"
by (rewrite in "\<lambda>n. \<hole>" to "f_inv (\<lambda>x. n < x + 1)" annotate_f) fact
(* Any identifier will work *)
lemma
assumes "P (\<lambda>n. f_inv (\<lambda>x. n < x + 1) n + 1) = x"
shows "P (\<lambda>n. f n + 1) = x"
by (rewrite in "\<lambda>abc. \<hole>" to "f_inv (\<lambda>x. abc < x + 1)" annotate_f) fact
(* The "for" keyword. *)
lemma
assumes "P (2 + 1)"
shows "\<And>x y. P (1 + 2 :: nat)"
by (rewrite in "P (1 + 2)" at for (x) add.commute) fact
lemma
assumes "\<And>x y. P (y + x)"
shows "\<And>x y. P (x + y :: nat)"
by (rewrite in "P (x + _)" at for (x y) add.commute) fact
lemma
assumes "\<And>x y z. y + x + z = z + y + (x::int)"
shows "\<And>x y z. x + y + z = z + y + (x::int)"
by (rewrite at "x + y" in "x + y + z" in for (x y z) add.commute) fact
lemma
assumes "\<And>x y z. z + (x + y) = z + y + (x::int)"
shows "\<And>x y z. x + y + z = z + y + (x::int)"
by (rewrite at "(_ + y) + z" in for (y z) add.commute) fact
lemma
assumes "\<And>x y z. x + y + z = y + z + (x::int)"
shows "\<And>x y z. x + y + z = z + y + (x::int)"
by (rewrite at "\<hole> + _" at "_ = \<hole>" in for () add.commute) fact
lemma
assumes eq: "\<And>x. P x \<Longrightarrow> g x = x"
assumes f1: "\<And>x. Q x \<Longrightarrow> P x"
assumes f2: "\<And>x. Q x \<Longrightarrow> x"
shows "\<And>x. Q x \<Longrightarrow> g x"
apply (rewrite at "g x" in for (x) eq)
apply (fact f1)
apply (fact f2)
done
(* The for keyword can be used anywhere in the pattern where there is an \<And>-Quantifier. *)
lemma
assumes "(\<And>(x::int). x < 1 + x)"
and "(x::int) + 1 > x"
shows "(\<And>(x::int). x + 1 > x) \<Longrightarrow> (x::int) + 1 > x"
by (rewrite at "x + 1" in for (x) at asm add.commute)
(rule assms)
(* The rewrite method also has an ML interface *)
lemma
assumes "\<And>a b. P ((a + 1) * (1 + b)) "
shows "\<And>a b :: nat. P ((a + 1) * (b + 1))"
apply (tactic \<open>
let
val (x, ctxt) = yield_singleton Variable.add_fixes "x" @{context}
(* Note that the pattern order is reversed *)
val pat = [
Rewrite.For [(x, SOME @{typ nat})],
Rewrite.In,
Rewrite.Term (@{const plus(nat)} $ Free (x, @{typ nat}) $ @{term "1 :: nat"}, [])]
val to = NONE
in CCONVERSION (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute}) 1 end
\<close>)
apply (fact assms)
done
lemma
assumes "Q (\<lambda>b :: int. P (\<lambda>a. a + b) (\<lambda>a. a + b))"
shows "Q (\<lambda>b :: int. P (\<lambda>a. a + b) (\<lambda>a. b + a))"
apply (tactic \<open>
let
val (x, ctxt) = yield_singleton Variable.add_fixes "x" @{context}
val pat = [
Rewrite.Concl,
Rewrite.In,
Rewrite.Term (Free ("Q", (@{typ "int"} --> TVar (("'b",0), [])) --> @{typ bool})
$ Abs ("x", @{typ int}, Rewrite.mk_hole 1 (@{typ int} --> TVar (("'b",0), [])) $ Bound 0), [(x, @{typ int})]),
Rewrite.In,
Rewrite.Term (@{const plus(int)} $ Free (x, @{typ int}) $ Var (("c", 0), @{typ int}), [])
]
val to = NONE
in CCONVERSION (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute}) 1 end
\<close>)
apply (fact assms)
done
(* There is also conversion-like rewrite function: *)
ML \<open>
val ct = @{cprop "Q (\<lambda>b :: int. P (\<lambda>a. a + b) (\<lambda>a. b + a))"}
val (x, ctxt) = yield_singleton Variable.add_fixes "x" @{context}
val pat = [
Rewrite.Concl,
Rewrite.In,
Rewrite.Term (Free ("Q", (@{typ "int"} --> TVar (("'b",0), [])) --> @{typ bool})
$ Abs ("x", @{typ int}, Rewrite.mk_hole 1 (@{typ int} --> TVar (("'b",0), [])) $ Bound 0), [(x, @{typ int})]),
Rewrite.In,
Rewrite.Term (@{const plus(int)} $ Free (x, @{typ int}) $ Var (("c", 0), @{typ int}), [])
]
val to = NONE
val th = Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute} ct
\<close>
section \<open>Regression tests\<close>
ML \<open>
val ct = @{cterm "(\<lambda>b :: int. (\<lambda>a. b + a))"}
val (x, ctxt) = yield_singleton Variable.add_fixes "x" @{context}
val pat = [
Rewrite.In,
Rewrite.Term (@{const plus(int)} $ Var (("c", 0), @{typ int}) $ Var (("c", 0), @{typ int}), [])
]
val to = NONE
val _ =
case try (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute}) ct of
NONE => ()
| _ => error "should not have matched anything"
\<close>
ML \<open>
Rewrite.params_pconv (Conv.all_conv |> K |> K) @{context} (Vartab.empty, []) @{cterm "\<And>x. PROP A"}
\<close>
lemma
assumes eq: "PROP A \<Longrightarrow> PROP B \<equiv> PROP C"
assumes f1: "PROP D \<Longrightarrow> PROP A"
assumes f2: "PROP D \<Longrightarrow> PROP C"
shows "\<And>x. PROP D \<Longrightarrow> PROP B"
apply (rewrite eq)
apply (fact f1)
apply (fact f2)
done
end