(* Author: Tobias Nipkow
Instantiation of the generic linear arithmetic package for int.
*)
signature INT_ARITH =
sig
  val setup: Context.generic -> Context.generic
end
structure Int_Arith : INT_ARITH =
struct
(* Update parameters of arithmetic prover *)
(* reduce contradictory =/</<= to False *)
(* Evaluation of terms of the form "m R n" where R is one of "=", "<=" or "<",
   and m and n are ground terms over rings (roughly speaking).
   That is, m and n consist only of 1s combined with "+", "-" and "*".
*)
val zeroth = (Thm.symmetric o mk_meta_eq) @{thm of_int_0};
val lhss0 = [@{cpat "0::?'a::ring"}];
fun proc0 phi ctxt ct =
  let val T = Thm.ctyp_of_cterm ct
  in if Thm.typ_of T = @{typ int} then NONE else
     SOME (Thm.instantiate' [SOME T] [] zeroth)
  end;
val zero_to_of_int_zero_simproc =
  make_simproc {lhss = lhss0, name = "zero_to_of_int_zero_simproc",
  proc = proc0, identifier = []};
val oneth = (Thm.symmetric o mk_meta_eq) @{thm of_int_1};
val lhss1 = [@{cpat "1::?'a::ring_1"}];
fun proc1 phi ctxt ct =
  let val T = Thm.ctyp_of_cterm ct
  in if Thm.typ_of T = @{typ int} then NONE else
     SOME (Thm.instantiate' [SOME T] [] oneth)
  end;
val one_to_of_int_one_simproc =
  make_simproc {lhss = lhss1, name = "one_to_of_int_one_simproc",
  proc = proc1, identifier = []};
fun check (Const (@{const_name Groups.one}, @{typ int})) = false
  | check (Const (@{const_name Groups.one}, _)) = true
  | check (Const (s, _)) = member (op =) [@{const_name HOL.eq},
      @{const_name Groups.times}, @{const_name Groups.uminus},
      @{const_name Groups.minus}, @{const_name Groups.plus},
      @{const_name Groups.zero},
      @{const_name Orderings.less}, @{const_name Orderings.less_eq}] s
  | check (a $ b) = check a andalso check b
  | check _ = false;
val conv_ss =
  simpset_of (put_simpset HOL_basic_ss @{context}
    addsimps
     ((map (fn th => th RS sym) [@{thm of_int_add}, @{thm of_int_mult},
             @{thm of_int_diff},  @{thm of_int_minus}])@
      [@{thm of_int_less_iff}, @{thm of_int_le_iff}, @{thm of_int_eq_iff}])
     addsimprocs [zero_to_of_int_zero_simproc,one_to_of_int_one_simproc]);
fun sproc phi ctxt ct =
  if check (Thm.term_of ct) then SOME (Simplifier.rewrite (put_simpset conv_ss ctxt) ct)
  else NONE;
val lhss' =
  [@{cpat "(?x::?'a::ring_char_0) = (?y::?'a)"},
   @{cpat "(?x::?'a::linordered_idom) < (?y::?'a)"},
   @{cpat "(?x::?'a::linordered_idom) <= (?y::?'a)"}]
val zero_one_idom_simproc =
  make_simproc {lhss = lhss' , name = "zero_one_idom_simproc",
  proc = sproc, identifier = []}
fun number_of ctxt T n =
  if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, @{sort numeral}))
  then raise CTERM ("number_of", [])
  else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n;
val setup =
  Lin_Arith.add_inj_thms [@{thm zle_int} RS iffD2, @{thm int_int_eq} RS iffD2]
  #> Lin_Arith.add_lessD @{thm zless_imp_add1_zle}
  #> Lin_Arith.add_simps @{thms of_nat_simps of_int_simps}
  #> Lin_Arith.add_simps
      [@{thm of_int_numeral}, @{thm nat_0}, @{thm nat_1}, @{thm diff_nat_numeral}, @{thm nat_numeral}]
  #> Lin_Arith.add_simprocs [zero_one_idom_simproc]
  #> Lin_Arith.set_number_of number_of
  #> Lin_Arith.add_inj_const (@{const_name of_nat}, HOLogic.natT --> HOLogic.intT)
  #> Lin_Arith.add_discrete_type @{type_name Int.int}
end;