(* Title: HOL/Wellfounded_Relations
ID: $Id$
Author: Konrad Slind
Copyright 1996 TU Munich
Derived WF relations: inverse image, lexicographic product, measure, ...
*)
section "`Less than' on the natural numbers";
Goalw [less_than_def] "wf less_than";
by (rtac (wf_pred_nat RS wf_trancl) 1);
qed "wf_less_than";
AddIffs [wf_less_than];
Goalw [less_than_def] "trans less_than";
by (rtac trans_trancl 1);
qed "trans_less_than";
AddIffs [trans_less_than];
Goalw [less_than_def, less_def] "((x,y): less_than) = (x<y)";
by (Simp_tac 1);
qed "less_than_iff";
AddIffs [less_than_iff];
Goal "(!!n. (ALL m. Suc m <= n --> P m) ==> P n) ==> P n";
by (rtac (wf_less_than RS wf_induct) 1);
by (resolve_tac (premises()) 1);
by Auto_tac;
qed_spec_mp "full_nat_induct";
(*----------------------------------------------------------------------------
* The inverse image into a wellfounded relation is wellfounded.
*---------------------------------------------------------------------------*)
Goal "wf(r) ==> wf(inv_image r (f::'a=>'b))";
by (full_simp_tac (simpset() addsimps [inv_image_def, wf_eq_minimal]) 1);
by (Clarify_tac 1);
by (subgoal_tac "EX (w::'b). w : {w. EX (x::'a). x: Q & (f x = w)}" 1);
by (blast_tac (claset() delrules [allE]) 2);
by (etac allE 1);
by (mp_tac 1);
by (Blast_tac 1);
qed "wf_inv_image";
AddSIs [wf_inv_image];
(*----------------------------------------------------------------------------
* All measures are wellfounded.
*---------------------------------------------------------------------------*)
Goalw [measure_def] "wf (measure f)";
by (rtac (wf_less_than RS wf_inv_image) 1);
qed "wf_measure";
AddIffs [wf_measure];
val measure_induct = standard
(asm_full_simplify (simpset() addsimps [measure_def,inv_image_def])
(wf_measure RS wf_induct));
bind_thm ("measure_induct", measure_induct);
(*----------------------------------------------------------------------------
* Wellfoundedness of lexicographic combinations
*---------------------------------------------------------------------------*)
val [wfa,wfb] = goalw (the_context ()) [wf_def,lex_prod_def]
"[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)";
by (EVERY1 [rtac allI,rtac impI]);
by (simp_tac (HOL_basic_ss addsimps [split_paired_All]) 1);
by (rtac (wfa RS spec RS mp) 1);
by (EVERY1 [rtac allI,rtac impI]);
by (rtac (wfb RS spec RS mp) 1);
by (Blast_tac 1);
qed "wf_lex_prod";
AddSIs [wf_lex_prod];
(*---------------------------------------------------------------------------
* Transitivity of WF combinators.
*---------------------------------------------------------------------------*)
Goalw [trans_def, lex_prod_def]
"!!R1 R2. [| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)";
by (Simp_tac 1);
by (Blast_tac 1);
qed "trans_lex_prod";
AddSIs [trans_lex_prod];
(*---------------------------------------------------------------------------
* Wellfoundedness of proper subset on finite sets.
*---------------------------------------------------------------------------*)
Goalw [finite_psubset_def] "wf(finite_psubset)";
by (rtac (wf_measure RS wf_subset) 1);
by (simp_tac (simpset() addsimps [measure_def, inv_image_def, less_than_def,
symmetric less_def])1);
by (fast_tac (claset() addSEs [psubset_card_mono]) 1);
qed "wf_finite_psubset";
Goalw [finite_psubset_def, trans_def] "trans finite_psubset";
by (simp_tac (simpset() addsimps [psubset_def]) 1);
by (Blast_tac 1);
qed "trans_finite_psubset";
(*---------------------------------------------------------------------------
* Wellfoundedness of finite acyclic relations
* Cannot go into WF because it needs Finite.
*---------------------------------------------------------------------------*)
Goal "finite r ==> acyclic r --> wf r";
by (etac finite_induct 1);
by (Blast_tac 1);
by (split_all_tac 1);
by (Asm_full_simp_tac 1);
qed_spec_mp "finite_acyclic_wf";
Goal "[|finite r; acyclic r|] ==> wf (r^-1)";
by (etac (finite_converse RS iffD2 RS finite_acyclic_wf) 1);
by (etac (acyclic_converse RS iffD2) 1);
qed "finite_acyclic_wf_converse";
Goal "finite r ==> wf r = acyclic r";
by (blast_tac (claset() addIs [finite_acyclic_wf,wf_acyclic]) 1);
qed "wf_iff_acyclic_if_finite";
(*---------------------------------------------------------------------------
* A relation is wellfounded iff it has no infinite descending chain
* Cannot go into WF because it needs type nat.
*---------------------------------------------------------------------------*)
Goalw [wf_eq_minimal RS eq_reflection]
"wf r = (~(EX f. ALL i. (f(Suc i),f i) : r))";
by (rtac iffI 1);
by (rtac notI 1);
by (etac exE 1);
by (eres_inst_tac [("x","{w. EX i. w=f i}")] allE 1);
by (Blast_tac 1);
by (etac contrapos_np 1);
by (Asm_full_simp_tac 1);
by (Clarify_tac 1);
by (subgoal_tac "ALL n. nat_rec x (%i y. @z. z:Q & (z,y):r) n : Q" 1);
by (res_inst_tac[("x","nat_rec x (%i y. @z. z:Q & (z,y):r)")]exI 1);
by (rtac allI 1);
by (Simp_tac 1);
by (rtac someI2_ex 1);
by (Blast_tac 1);
by (Blast_tac 1);
by (rtac allI 1);
by (induct_tac "n" 1);
by (Asm_simp_tac 1);
by (Simp_tac 1);
by (rtac someI2_ex 1);
by (Blast_tac 1);
by (Blast_tac 1);
qed "wf_iff_no_infinite_down_chain";
(*----------------------------------------------------------------------------
* Weakly decreasing sequences (w.r.t. some well-founded order) stabilize.
*---------------------------------------------------------------------------*)
Goal "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*";
by (induct_tac "k" 1);
by (ALLGOALS Simp_tac);
by (blast_tac (claset() addIs [rtrancl_trans]) 1);
val lemma = result();
Goal "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |] \
\ ==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))";
by (etac wf_induct 1);
by (Clarify_tac 1);
by (case_tac "EX j. (f (m+j), f m) : r^+" 1);
by (Clarify_tac 1);
by (subgoal_tac "EX i. ALL k. f ((m+j)+i+k) = f ((m+j)+i)" 1);
by (Clarify_tac 1);
by (res_inst_tac [("x","j+i")] exI 1);
by (asm_full_simp_tac (simpset() addsimps add_ac) 1);
by (Blast_tac 1);
by (res_inst_tac [("x","0")] exI 1);
by (Clarsimp_tac 1);
by (dres_inst_tac [("i","m"), ("k","k")] lemma 1);
by (blast_tac (claset() addEs [rtranclE] addDs [rtrancl_into_trancl1]) 1);
val lemma = result();
Goal "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |] \
\ ==> EX i. ALL k. f (i+k) = f i";
by (dres_inst_tac [("x","0")] (lemma RS spec) 1);
by Auto_tac;
qed "wf_weak_decr_stable";
(* special case: <= *)
Goal "(m, n) : pred_nat^* = (m <= n)";
by (simp_tac (simpset() addsimps [less_eq, thm"reflcl_trancl" RS sym]
delsimps [thm"reflcl_trancl"]) 1);
by (arith_tac 1);
qed "le_eq";
Goal "ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i";
by (res_inst_tac [("r","pred_nat")] wf_weak_decr_stable 1);
by (asm_simp_tac (simpset() addsimps [le_eq]) 1);
by (REPEAT (resolve_tac [wf_trancl,wf_pred_nat] 1));
qed "weak_decr_stable";
(*----------------------------------------------------------------------------
* Wellfoundedness of same_fst
*---------------------------------------------------------------------------*)
Goalw[same_fst_def] "[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R";
by (Asm_simp_tac 1);
qed "same_fstI";
val prems = goalw thy [same_fst_def]
"(!!x. P x ==> wf(R x)) ==> wf(same_fst P R)";
by(full_simp_tac (simpset() delcongs [imp_cong] addsimps [wf_def]) 1);
by(strip_tac 1);
by(rename_tac "a b" 1);
by(case_tac "wf(R a)" 1);
by (eres_inst_tac [("a","b")] wf_induct 1);
by (EVERY1[etac allE, etac allE, etac mp, rtac allI, rtac allI]);
by(Blast_tac 1);
by(blast_tac (claset() addIs prems) 1);
qed "wf_same_fst";
(* ### see also LEAST and wellorderings in Wellfounded_Recursion.ML *)
Goal "wf r ==> !x y. ((x,y):r^+) = ((y,x)~:r^*) ==> \
\ P k ==> ? x. P x & (!y. P y --> (m x,m y):r^*)";
by (dtac (wf_trancl RS (wf_eq_minimal RS iffD1)) 1);
by (dres_inst_tac [("x","m`Collect P")] spec 1);
by (Force_tac 1);
qed "wf_linord_ex_has_least";
(* successor of obsolete nonempty_has_least *)
Goal "P k ==> ? x. P x & (!y. P y --> m x <= (m y::nat))";
by (simp_tac (HOL_basic_ss addsimps [le_eq RS sym]) 1);
by (rtac (wf_pred_nat RS wf_linord_ex_has_least) 1);
by (simp_tac (simpset() addsimps [less_eq,not_le_iff_less,le_eq]) 1);
by (atac 1);
qed "ex_has_least_nat";
Goalw [thm "LeastM_def"]
"P k ==> P (LeastM m P) & (!y. P y --> m (LeastM m P) <= (m y::nat))";
by (rtac someI_ex 1);
by (etac ex_has_least_nat 1);
qed "LeastM_nat_lemma";
bind_thm ("LeastM_natI", LeastM_nat_lemma RS conjunct1);
Goal "P x ==> m (LeastM m P) <= (m x::nat)";
by (rtac (LeastM_nat_lemma RS conjunct2 RS spec RS mp) 1);
by (atac 1);
by (atac 1);
qed "LeastM_nat_le";