(* Title: ZF/Constructible/MetaExists.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
*)
header{*The meta-existential quantifier*}
theory MetaExists imports Main begin
text{*Allows quantification over any term having sort @{text logic}. Used to
quantify over classes. Yields a proposition rather than a FOL formula.*}
definition
ex :: "(('a::{}) => prop) => prop" (binder "?? " 0) where
"ex(P) == (!!Q. (!!x. PROP P(x) ==> PROP Q) ==> PROP Q)"
notation (xsymbols)
ex (binder "\<Or>" 0)
lemma meta_exI: "PROP P(x) ==> (?? x. PROP P(x))"
proof (unfold ex_def)
assume P: "PROP P(x)"
fix Q
assume PQ: "\<And>x. PROP P(x) \<Longrightarrow> PROP Q"
from P show "PROP Q" by (rule PQ)
qed
lemma meta_exE: "[| ?? x. PROP P(x); !!x. PROP P(x) ==> PROP R |] ==> PROP R"
proof (unfold ex_def)
assume QPQ: "\<And>Q. (\<And>x. PROP P(x) \<Longrightarrow> PROP Q) \<Longrightarrow> PROP Q"
assume PR: "\<And>x. PROP P(x) \<Longrightarrow> PROP R"
from PR show "PROP R" by (rule QPQ)
qed
end