(* Title: HOL/Record.thy
ID: $Id$
Author: Wolfgang Naraschewski and Markus Wenzel, TU Muenchen
*)
header {* Extensible records with structural subtyping *}
theory Record = Product_Type
files ("Tools/record_package.ML"):
subsection {* Abstract product types *}
locale product_type =
fixes Rep and Abs and pair and dest1 and dest2
assumes "typedef": "type_definition Rep Abs UNIV"
and pair: "pair == (\<lambda>a b. Abs (a, b))"
and dest1: "dest1 == (\<lambda>p. fst (Rep p))"
and dest2: "dest2 == (\<lambda>p. snd (Rep p))"
lemmas product_typeI =
product_type.intro [OF product_type_axioms.intro]
lemma (in product_type)
"inject": "(pair x y = pair x' y') = (x = x' \<and> y = y')"
by (simp add: pair type_definition.Abs_inject [OF "typedef"])
lemma (in product_type) conv1: "dest1 (pair x y) = x"
by (simp add: pair dest1 type_definition.Abs_inverse [OF "typedef"])
lemma (in product_type) conv2: "dest2 (pair x y) = y"
by (simp add: pair dest2 type_definition.Abs_inverse [OF "typedef"])
lemma (in product_type) induct [induct type]:
assumes hyp: "!!x y. P (pair x y)"
shows "P p"
proof (rule type_definition.Abs_induct [OF "typedef"])
fix q show "P (Abs q)"
proof (induct q)
fix x y have "P (pair x y)" by (rule hyp)
also have "pair x y = Abs (x, y)" by (simp only: pair)
finally show "P (Abs (x, y))" .
qed
qed
lemma (in product_type) cases [cases type]:
"(!!x y. p = pair x y ==> C) ==> C"
by (induct p) (auto simp add: "inject")
lemma (in product_type) surjective_pairing:
"p = pair (dest1 p) (dest2 p)"
by (induct p) (simp only: conv1 conv2)
lemma (in product_type) split_paired_all:
"(!!x. PROP P x) == (!!a b. PROP P (pair a b))"
proof
fix a b
assume "!!x. PROP P x"
thus "PROP P (pair a b)" .
next
fix x
assume "!!a b. PROP P (pair a b)"
hence "PROP P (pair (dest1 x) (dest2 x))" .
thus "PROP P x" by (simp only: surjective_pairing [symmetric])
qed
subsection {* Concrete record syntax *}
nonterminals
ident field_type field_types field fields update updates
syntax
"_constify" :: "id => ident" ("_")
"_constify" :: "longid => ident" ("_")
"_field_type" :: "[ident, type] => field_type" ("(2_ ::/ _)")
"" :: "field_type => field_types" ("_")
"_field_types" :: "[field_type, field_types] => field_types" ("_,/ _")
"_record_type" :: "field_types => type" ("(3'(| _ |'))")
"_record_type_scheme" :: "[field_types, type] => type" ("(3'(| _,/ (2... ::/ _) |'))")
"_field" :: "[ident, 'a] => field" ("(2_ =/ _)")
"" :: "field => fields" ("_")
"_fields" :: "[field, fields] => fields" ("_,/ _")
"_record" :: "fields => 'a" ("(3'(| _ |'))")
"_record_scheme" :: "[fields, 'a] => 'a" ("(3'(| _,/ (2... =/ _) |'))")
"_update_name" :: idt
"_update" :: "[ident, 'a] => update" ("(2_ :=/ _)")
"" :: "update => updates" ("_")
"_updates" :: "[update, updates] => updates" ("_,/ _")
"_record_update" :: "['a, updates] => 'b" ("_/(3'(| _ |'))" [900,0] 900)
syntax (xsymbols)
"_record_type" :: "field_types => type" ("(3\<lparr>_\<rparr>)")
"_record_type_scheme" :: "[field_types, type] => type" ("(3\<lparr>_,/ (2\<dots> ::/ _)\<rparr>)")
"_record" :: "fields => 'a" ("(3\<lparr>_\<rparr>)")
"_record_scheme" :: "[fields, 'a] => 'a" ("(3\<lparr>_,/ (2\<dots> =/ _)\<rparr>)")
"_record_update" :: "['a, updates] => 'b" ("_/(3\<lparr>_\<rparr>)" [900,0] 900)
subsection {* Package setup *}
use "Tools/record_package.ML"
setup RecordPackage.setup
end