(* Title: Pure/ML/ml_antiquotations.ML
Author: Makarius
Miscellaneous ML antiquotations.
*)
signature ML_ANTIQUOTATIONS =
sig
val make_judgment: Proof.context -> term -> term
val dest_judgment: Proof.context -> term -> term
end;
structure ML_Antiquotations: ML_ANTIQUOTATIONS =
struct
(* ML support *)
val _ = Theory.setup
(ML_Antiquotation.inline \<^binding>\<open>undefined\<close>
(Scan.succeed "(raise General.Match)") #>
ML_Antiquotation.inline \<^binding>\<open>assert\<close>
(Scan.succeed "(fn b => if b then () else raise General.Fail \"Assertion failed\")") #>
ML_Antiquotation.declaration_embedded \<^binding>\<open>print\<close>
(Scan.lift (Scan.optional Parse.embedded "Output.writeln"))
(fn src => fn output => fn ctxt =>
let
val struct_name = ML_Context.struct_name ctxt;
val (_, pos) = Token.name_of_src src;
val (a, ctxt') = ML_Context.variant "output" ctxt;
val env =
"val " ^ a ^ ": string -> unit =\n\
\ (" ^ output ^ ") o (fn s => s ^ Position.here (" ^
ML_Syntax.print_position pos ^ "));\n";
val body =
"(fn x => (" ^ struct_name ^ "." ^ a ^ " (" ^ ML_Pretty.make_string_fn ^ " x); x))";
in (K (env, body), ctxt') end) #>
ML_Antiquotation.value \<^binding>\<open>rat\<close>
(Scan.lift (Scan.optional (Args.$$$ "~" >> K ~1) 1 -- Parse.nat --
Scan.optional (Args.$$$ "/" |-- Parse.nat) 1) >> (fn ((sign, a), b) =>
"Rat.make " ^ ML_Syntax.print_pair ML_Syntax.print_int ML_Syntax.print_int (sign * a, b))) #>
ML_Antiquotation.conditional \<^binding>\<open>if_linux\<close> (fn _ => ML_System.platform_is_linux) #>
ML_Antiquotation.conditional \<^binding>\<open>if_macos\<close> (fn _ => ML_System.platform_is_macos) #>
ML_Antiquotation.conditional \<^binding>\<open>if_windows\<close> (fn _ => ML_System.platform_is_windows) #>
ML_Antiquotation.conditional \<^binding>\<open>if_unix\<close> (fn _ => ML_System.platform_is_unix));
(* formal entities *)
val _ = Theory.setup
(ML_Antiquotation.value_embedded \<^binding>\<open>system_option\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, (name, pos)) =>
(Completion.check_option (Options.default ()) ctxt (name, pos) |> ML_Syntax.print_string))) #>
ML_Antiquotation.value_embedded \<^binding>\<open>theory\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, (name, pos)) =>
(Theory.check {long = false} ctxt (name, pos);
"Context.get_theory {long = false} (Proof_Context.theory_of ML_context) " ^
ML_Syntax.print_string name))
|| Scan.succeed "Proof_Context.theory_of ML_context") #>
ML_Antiquotation.value_embedded \<^binding>\<open>theory_context\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, (name, pos)) =>
(Theory.check {long = false} ctxt (name, pos);
"Proof_Context.get_global (Proof_Context.theory_of ML_context) " ^
ML_Syntax.print_string name))) #>
ML_Antiquotation.inline \<^binding>\<open>context\<close>
(Args.context >> (fn ctxt => ML_Context.struct_name ctxt ^ ".ML_context")) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>typ\<close>
(Args.typ >> (ML_Syntax.atomic o ML_Syntax.print_typ)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>term\<close>
(Args.term >> (ML_Syntax.atomic o ML_Syntax.print_term)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>prop\<close>
(Args.prop >> (ML_Syntax.atomic o ML_Syntax.print_term)) #>
ML_Antiquotation.value_embedded \<^binding>\<open>ctyp\<close> (Args.typ >> (fn T =>
"Thm.ctyp_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_typ T))) #>
ML_Antiquotation.value_embedded \<^binding>\<open>cterm\<close> (Args.term >> (fn t =>
"Thm.cterm_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_term t))) #>
ML_Antiquotation.value_embedded \<^binding>\<open>cprop\<close> (Args.prop >> (fn t =>
"Thm.cterm_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_term t))) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>oracle_name\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, (name, pos)) =>
ML_Syntax.print_string (Thm.check_oracle ctxt (name, pos)))));
(* schematic variables *)
val schematic_input =
Args.context -- Scan.lift Parse.embedded_input >> (fn (ctxt, src) =>
(Proof_Context.set_mode Proof_Context.mode_schematic ctxt,
(Syntax.implode_input src, Input.pos_of src)));
val _ = Theory.setup
(ML_Antiquotation.inline_embedded \<^binding>\<open>tvar\<close>
(schematic_input >> (fn (ctxt, (s, pos)) =>
(case Syntax.read_typ ctxt s of
TVar v => ML_Syntax.print_pair ML_Syntax.print_indexname ML_Syntax.print_sort v
| _ => error ("Schematic type variable expected" ^ Position.here pos)))) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>var\<close>
(schematic_input >> (fn (ctxt, (s, pos)) =>
(case Syntax.read_term ctxt s of
Var v => ML_Syntax.print_pair ML_Syntax.print_indexname ML_Syntax.print_typ v
| _ => error ("Schematic variable expected" ^ Position.here pos)))));
(* type classes *)
fun class syn = Args.context -- Scan.lift Parse.embedded_inner_syntax >> (fn (ctxt, s) =>
Proof_Context.read_class ctxt s
|> syn ? Lexicon.mark_class
|> ML_Syntax.print_string);
val _ = Theory.setup
(ML_Antiquotation.inline_embedded \<^binding>\<open>class\<close> (class false) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>class_syntax\<close> (class true) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>sort\<close>
(Args.context -- Scan.lift Parse.embedded_inner_syntax >> (fn (ctxt, s) =>
ML_Syntax.atomic (ML_Syntax.print_sort (Syntax.read_sort ctxt s)))));
(* type constructors *)
fun type_name kind check = Args.context -- Scan.lift (Parse.token Parse.embedded)
>> (fn (ctxt, tok) =>
let
val s = Token.inner_syntax_of tok;
val (_, pos) = Input.source_content (Token.input_of tok);
val Type (c, _) = Proof_Context.read_type_name {proper = true, strict = false} ctxt s;
val decl = Type.the_decl (Proof_Context.tsig_of ctxt) (c, pos);
val res =
(case try check (c, decl) of
SOME res => res
| NONE => error ("Not a " ^ kind ^ ": " ^ quote c ^ Position.here pos));
in ML_Syntax.print_string res end);
val _ = Theory.setup
(ML_Antiquotation.inline_embedded \<^binding>\<open>type_name\<close>
(type_name "logical type" (fn (c, Type.LogicalType _) => c)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>type_abbrev\<close>
(type_name "type abbreviation" (fn (c, Type.Abbreviation _) => c)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>nonterminal\<close>
(type_name "nonterminal" (fn (c, Type.Nonterminal) => c)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>type_syntax\<close>
(type_name "type" (fn (c, _) => Lexicon.mark_type c)));
(* constants *)
fun const_name check = Args.context -- Scan.lift (Parse.token Parse.embedded)
>> (fn (ctxt, tok) =>
let
val s = Token.inner_syntax_of tok;
val (_, pos) = Input.source_content (Token.input_of tok);
val Const (c, _) = Proof_Context.read_const {proper = true, strict = false} ctxt s;
val res = check (Proof_Context.consts_of ctxt, c)
handle TYPE (msg, _, _) => error (msg ^ Position.here pos);
in ML_Syntax.print_string res end);
val _ = Theory.setup
(ML_Antiquotation.inline_embedded \<^binding>\<open>const_name\<close>
(const_name (fn (consts, c) => (Consts.the_const consts c; c))) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>const_abbrev\<close>
(const_name (fn (consts, c) => (Consts.the_abbreviation consts c; c))) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>const_syntax\<close>
(const_name (fn (_, c) => Lexicon.mark_const c)) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>syntax_const\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, arg) =>
ML_Syntax.print_string (Proof_Context.check_syntax_const ctxt arg))) #>
ML_Antiquotation.inline_embedded \<^binding>\<open>const\<close>
(Args.context -- Scan.lift (Parse.position Parse.embedded_inner_syntax) -- Scan.optional
(Scan.lift (Args.$$$ "(") |-- Parse.enum1' "," Args.typ --| Scan.lift (Args.$$$ ")")) []
>> (fn ((ctxt, (raw_c, pos)), Ts) =>
let
val Const (c, _) =
Proof_Context.read_const {proper = true, strict = true} ctxt raw_c;
val consts = Proof_Context.consts_of ctxt;
val n = length (Consts.typargs consts (c, Consts.type_scheme consts c));
val _ = length Ts <> n andalso
error ("Constant requires " ^ string_of_int n ^ " type argument(s): " ^
quote c ^ enclose "(" ")" (commas (replicate n "_")) ^ Position.here pos);
val const = Const (c, Consts.instance consts (c, Ts));
in ML_Syntax.atomic (ML_Syntax.print_term const) end)));
(* object-logic judgment *)
fun make_judgment ctxt =
let val const = Object_Logic.judgment_const ctxt
in fn t => Const const $ t end;
fun dest_judgment ctxt =
let
val is_judgment = Object_Logic.is_judgment ctxt;
val drop_judgment = Object_Logic.drop_judgment ctxt;
in
fn t =>
if is_judgment t then drop_judgment t
else raise TERM ("dest_judgment", [t])
end;
val _ = Theory.setup
(ML_Antiquotation.value \<^binding>\<open>make_judgment\<close>
(Scan.succeed "ML_Antiquotations.make_judgment ML_context") #>
ML_Antiquotation.value \<^binding>\<open>dest_judgment\<close>
(Scan.succeed "ML_Antiquotations.dest_judgment ML_context"));
(* type/term constructors *)
local
val keywords = Keyword.add_minor_keywords ["for", "=>"] Keyword.empty_keywords;
val parse_name = Parse.input Parse.name;
val parse_args = Scan.repeat Parse.embedded_ml_underscore;
val parse_for_args = Scan.optional (Parse.$$$ "for" |-- Parse.!!! parse_args) [];
fun parse_body b =
if b then Parse.$$$ "=>" |-- Parse.!!! Parse.embedded_input >> (ML_Lex.read_source #> single)
else Scan.succeed [];
fun is_dummy [Antiquote.Text tok] = ML_Lex.content_of tok = "_"
| is_dummy _ = false;
val ml = ML_Lex.tokenize_no_range;
val ml_range = ML_Lex.tokenize_range;
val ml_dummy = ml "_";
fun ml_enclose range x = ml "(" @ x @ ml_range range ")";
fun ml_parens x = ml "(" @ x @ ml ")";
fun ml_bracks x = ml "[" @ x @ ml "]";
fun ml_commas xs = flat (separate (ml ", ") xs);
val ml_list = ml_bracks o ml_commas;
val ml_string = ml o ML_Syntax.print_string;
fun ml_pair (x, y) = ml_parens (ml_commas [x, y]);
fun type_antiquotation binding {function} =
ML_Context.add_antiquotation binding true
(fn range => fn src => fn ctxt =>
let
val ((s, type_args), fn_body) = src
|> Parse.read_embedded_src ctxt keywords (parse_name -- parse_args -- parse_body function);
val pos = Input.pos_of s;
val Type (c, Ts) =
Proof_Context.read_type_name {proper = true, strict = true} ctxt
(Syntax.implode_input s);
val n = length Ts;
val _ =
length type_args = n orelse
error ("Type constructor " ^ quote (Proof_Context.markup_type ctxt c) ^
" takes " ^ string_of_int n ^ " argument(s)" ^ Position.here pos);
val (decls1, ctxt1) = ML_Context.expand_antiquotes_list type_args ctxt;
val (decls2, ctxt2) = ML_Context.expand_antiquotes_list fn_body ctxt1;
fun decl' ctxt' =
let
val (ml_args_env, ml_args_body) = split_list (decls1 ctxt');
val (ml_fn_env, ml_fn_body) = split_list (decls2 ctxt');
val ml1 =
ml_enclose range (ml "Term.Type " @ ml_pair (ml_string c, ml_list ml_args_body));
val ml2 =
if function then
ml_enclose range
(ml_range range "fn " @ ml1 @ ml "=> " @ flat ml_fn_body @
ml "| T => " @ ml_range range "raise" @
ml " Term.TYPE (" @ ml_string ("Type_fn " ^ quote c) @ ml ", [T], [])")
else ml1;
in (flat (ml_args_env @ ml_fn_env), ml2) end;
in (decl', ctxt2) end);
fun const_antiquotation binding {pattern, function} =
ML_Context.add_antiquotation binding true
(fn range => fn src => fn ctxt =>
let
val (((s, type_args), term_args), fn_body) = src
|> Parse.read_embedded_src ctxt keywords
(parse_name -- parse_args -- parse_for_args -- parse_body function);
val Const (c, T) =
Proof_Context.read_const {proper = true, strict = true} ctxt
(Syntax.implode_input s);
val consts = Proof_Context.consts_of ctxt;
val type_paths = Consts.type_arguments consts c;
val type_params = map Term.dest_TVar (Consts.typargs consts (c, T));
val n = length type_params;
val m = length (Term.binder_types T);
fun err msg =
error ("Constant " ^ quote (Proof_Context.markup_const ctxt c) ^ msg ^
Position.here (Input.pos_of s));
val _ =
length type_args <> n andalso err (" takes " ^ string_of_int n ^ " type argument(s)");
val _ =
length term_args > m andalso Term.is_Type (Term.body_type T) andalso
err (" cannot have more than " ^ string_of_int m ^ " argument(s)");
val (decls1, ctxt1) = ML_Context.expand_antiquotes_list type_args ctxt;
val (decls2, ctxt2) = ML_Context.expand_antiquotes_list term_args ctxt1;
val (decls3, ctxt3) = ML_Context.expand_antiquotes_list fn_body ctxt2;
fun decl' ctxt' =
let
val (ml_args_env1, ml_args_body1) = split_list (decls1 ctxt');
val (ml_args_env2, ml_args_body2) = split_list (decls2 ctxt');
val (ml_fn_env, ml_fn_body) = split_list (decls3 ctxt');
val relevant = map is_dummy type_args ~~ type_paths;
fun relevant_path is =
not pattern orelse
let val p = rev is
in relevant |> exists (fn (u, q) => not u andalso is_prefix (op =) p q) end;
val ml_typarg = the o AList.lookup (op =) (type_params ~~ ml_args_body1);
fun ml_typ is (Type (d, Us)) =
if relevant_path is then
ml "Term.Type " @
ml_pair (ml_string d, ml_list (map_index (fn (i, U) => ml_typ (i :: is) U) Us))
else ml_dummy
| ml_typ is (TVar arg) = if relevant_path is then ml_typarg arg else ml_dummy
| ml_typ _ (TFree _) = raise Match;
fun ml_app [] = ml "Term.Const " @ ml_pair (ml_string c, ml_typ [] T)
| ml_app (u :: us) = ml "Term.$ " @ ml_pair (ml_app us, u);
val ml_env = flat (ml_args_env1 @ ml_args_env2 @ ml_fn_env);
val ml1 = ml_enclose range (ml_app (rev ml_args_body2));
val ml2 =
if function then
ml_enclose range
(ml_range range "fn " @ ml1 @ ml "=> " @ flat ml_fn_body @
ml "| t => " @ ml_range range "raise" @
ml " Term.TERM (" @ ml_string ("Const_fn " ^ quote c) @ ml ", [t])")
else ml1;
in (ml_env, ml2) end;
in (decl', ctxt3) end);
val _ = Theory.setup
(type_antiquotation \<^binding>\<open>Type\<close> {function = false} #>
type_antiquotation \<^binding>\<open>Type_fn\<close> {function = true} #>
const_antiquotation \<^binding>\<open>Const\<close> {pattern = false, function = false} #>
const_antiquotation \<^binding>\<open>Const_\<close> {pattern = true, function = false} #>
const_antiquotation \<^binding>\<open>Const_fn\<close> {pattern = true, function = true});
in end;
(* special forms *)
val _ = Theory.setup
(ML_Antiquotation.special_form \<^binding>\<open>try\<close> "() |> Basics.try" #>
ML_Antiquotation.special_form \<^binding>\<open>can\<close> "() |> Basics.can");
(* basic combinators *)
local
val parameter = Parse.position Parse.nat >> (fn (n, pos) =>
if n > 1 then n else error ("Bad parameter: " ^ string_of_int n ^ Position.here pos));
fun indices n = map string_of_int (1 upto n);
fun empty n = replicate_string n " []";
fun dummy n = replicate_string n " _";
fun vars x n = implode (map (fn a => " " ^ x ^ a) (indices n));
fun cons n = implode (map (fn a => " (x" ^ a ^ " :: xs" ^ a ^ ")") (indices n));
val tuple = enclose "(" ")" o commas;
fun tuple_empty n = tuple (replicate n "[]");
fun tuple_vars x n = tuple (map (fn a => x ^ a) (indices n));
fun tuple_cons n = "(" ^ tuple_vars "x" n ^ " :: xs)"
fun cons_tuple n = tuple (map (fn a => "x" ^ a ^ " :: xs" ^ a) (indices n));
in
val _ = Theory.setup
(ML_Antiquotation.value \<^binding>\<open>map\<close>
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun map _" ^ empty n ^ " = []\n\
\ | map f" ^ cons n ^ " = f" ^ vars "x" n ^ " :: map f" ^ vars "xs" n ^ "\n\
\ | map _" ^ dummy n ^ " = raise ListPair.UnequalLengths\n" ^
" in map f end")) #>
ML_Antiquotation.value \<^binding>\<open>fold\<close>
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun fold _" ^ empty n ^ " a = a\n\
\ | fold f" ^ cons n ^ " a = fold f" ^ vars "xs" n ^ " (f" ^ vars "x" n ^ " a)\n\
\ | fold _" ^ dummy n ^ " _ = raise ListPair.UnequalLengths\n" ^
" in fold f end")) #>
ML_Antiquotation.value \<^binding>\<open>fold_map\<close>
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun fold_map _" ^ empty n ^ " a = ([], a)\n\
\ | fold_map f" ^ cons n ^ " a =\n\
\ let\n\
\ val (x, a') = f" ^ vars "x" n ^ " a\n\
\ val (xs, a'') = fold_map f" ^ vars "xs" n ^ " a'\n\
\ in (x :: xs, a'') end\n\
\ | fold_map _" ^ dummy n ^ " _ = raise ListPair.UnequalLengths\n" ^
" in fold_map f end")) #>
ML_Antiquotation.value \<^binding>\<open>split_list\<close>
(Scan.lift parameter >> (fn n =>
"fn list =>\n\
\ let\n\
\ fun split_list [] =" ^ tuple_empty n ^ "\n\
\ | split_list" ^ tuple_cons n ^ " =\n\
\ let val" ^ tuple_vars "xs" n ^ " = split_list xs\n\
\ in " ^ cons_tuple n ^ "end\n\
\ in split_list list end")) #>
ML_Antiquotation.value \<^binding>\<open>apply\<close>
(Scan.lift (parameter -- Scan.option (Args.parens (Parse.position Parse.nat))) >>
(fn (n, opt_index) =>
let
val cond =
(case opt_index of
NONE => K true
| SOME (index, index_pos) =>
if 1 <= index andalso index <= n then equal (string_of_int index)
else error ("Bad index: " ^ string_of_int index ^ Position.here index_pos));
in
"fn f => fn " ^ tuple_vars "x" n ^ " => " ^
tuple (map (fn a => (if cond a then "f x" else "x") ^ a) (indices n))
end)));
end;
(* outer syntax *)
val _ = Theory.setup
(ML_Antiquotation.value_embedded \<^binding>\<open>keyword\<close>
(Args.context --
Scan.lift (Parse.embedded_position || Parse.position (Parse.keyword_with (K true)))
>> (fn (ctxt, (name, pos)) =>
if Keyword.is_keyword (Thy_Header.get_keywords' ctxt) name then
(Context_Position.report ctxt pos (Token.keyword_markup (true, Markup.keyword2) name);
"Parse.$$$ " ^ ML_Syntax.print_string name)
else error ("Bad outer syntax keyword " ^ quote name ^ Position.here pos))) #>
ML_Antiquotation.value_embedded \<^binding>\<open>command_keyword\<close>
(Args.context -- Scan.lift Parse.embedded_position >> (fn (ctxt, (name, pos)) =>
(case Keyword.command_markup (Thy_Header.get_keywords' ctxt) name of
SOME markup =>
(Context_Position.reports ctxt [(pos, markup), (pos, Markup.keyword1)];
ML_Syntax.print_pair ML_Syntax.print_string ML_Syntax.print_position (name, pos))
| NONE => error ("Bad outer syntax command " ^ quote name ^ Position.here pos)))));
end;