(* Title: HOL/Decision_Procs/Ferrack.thy
Author: Amine Chaieb
*)
theory Ferrack
imports Complex_Main Dense_Linear_Order DP_Library
"HOL-Library.Code_Target_Numeral"
begin
section \<open>Quantifier elimination for \<open>\<real> (0, 1, +, <)\<close>\<close>
(*********************************************************************************)
(**** SHADOW SYNTAX AND SEMANTICS ****)
(*********************************************************************************)
datatype (plugins del: size) num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num
| Mul int num
instantiation num :: size
begin
primrec size_num :: "num \<Rightarrow> nat"
where
"size_num (C c) = 1"
| "size_num (Bound n) = 1"
| "size_num (Neg a) = 1 + size_num a"
| "size_num (Add a b) = 1 + size_num a + size_num b"
| "size_num (Sub a b) = 3 + size_num a + size_num b"
| "size_num (Mul c a) = 1 + size_num a"
| "size_num (CN n c a) = 3 + size_num a "
instance ..
end
(* Semantics of numeral terms (num) *)
primrec Inum :: "real list \<Rightarrow> num \<Rightarrow> real"
where
"Inum bs (C c) = (real_of_int c)"
| "Inum bs (Bound n) = bs!n"
| "Inum bs (CN n c a) = (real_of_int c) * (bs!n) + (Inum bs a)"
| "Inum bs (Neg a) = -(Inum bs a)"
| "Inum bs (Add a b) = Inum bs a + Inum bs b"
| "Inum bs (Sub a b) = Inum bs a - Inum bs b"
| "Inum bs (Mul c a) = (real_of_int c) * Inum bs a"
(* FORMULAE *)
datatype (plugins del: size) fm =
T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num|
NOT fm| And fm fm| Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm
instantiation fm :: size
begin
primrec size_fm :: "fm \<Rightarrow> nat"
where
"size_fm (NOT p) = 1 + size_fm p"
| "size_fm (And p q) = 1 + size_fm p + size_fm q"
| "size_fm (Or p q) = 1 + size_fm p + size_fm q"
| "size_fm (Imp p q) = 3 + size_fm p + size_fm q"
| "size_fm (Iff p q) = 3 + 2 * (size_fm p + size_fm q)"
| "size_fm (E p) = 1 + size_fm p"
| "size_fm (A p) = 4 + size_fm p"
| "size_fm T = 1"
| "size_fm F = 1"
| "size_fm (Lt _) = 1"
| "size_fm (Le _) = 1"
| "size_fm (Gt _) = 1"
| "size_fm (Ge _) = 1"
| "size_fm (Eq _) = 1"
| "size_fm (NEq _) = 1"
instance ..
end
lemma size_fm_pos [simp]: "size p > 0" for p :: fm
by (induct p) simp_all
(* Semantics of formulae (fm) *)
primrec Ifm ::"real list \<Rightarrow> fm \<Rightarrow> bool"
where
"Ifm bs T = True"
| "Ifm bs F = False"
| "Ifm bs (Lt a) = (Inum bs a < 0)"
| "Ifm bs (Gt a) = (Inum bs a > 0)"
| "Ifm bs (Le a) = (Inum bs a \<le> 0)"
| "Ifm bs (Ge a) = (Inum bs a \<ge> 0)"
| "Ifm bs (Eq a) = (Inum bs a = 0)"
| "Ifm bs (NEq a) = (Inum bs a \<noteq> 0)"
| "Ifm bs (NOT p) = (\<not> (Ifm bs p))"
| "Ifm bs (And p q) = (Ifm bs p \<and> Ifm bs q)"
| "Ifm bs (Or p q) = (Ifm bs p \<or> Ifm bs q)"
| "Ifm bs (Imp p q) = ((Ifm bs p) \<longrightarrow> (Ifm bs q))"
| "Ifm bs (Iff p q) = (Ifm bs p = Ifm bs q)"
| "Ifm bs (E p) = (\<exists>x. Ifm (x#bs) p)"
| "Ifm bs (A p) = (\<forall>x. Ifm (x#bs) p)"
lemma IfmLeSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Le (Sub s t)) = (s' \<le> t')"
by simp
lemma IfmLtSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Lt (Sub s t)) = (s' < t')"
by simp
lemma IfmEqSub: "\<lbrakk> Inum bs s = s' ; Inum bs t = t' \<rbrakk> \<Longrightarrow> Ifm bs (Eq (Sub s t)) = (s' = t')"
by simp
lemma IfmNOT: " (Ifm bs p = P) \<Longrightarrow> (Ifm bs (NOT p) = (\<not>P))"
by simp
lemma IfmAnd: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (And p q) = (P \<and> Q))"
by simp
lemma IfmOr: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Or p q) = (P \<or> Q))"
by simp
lemma IfmImp: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Imp p q) = (P \<longrightarrow> Q))"
by simp
lemma IfmIff: " \<lbrakk> Ifm bs p = P ; Ifm bs q = Q\<rbrakk> \<Longrightarrow> (Ifm bs (Iff p q) = (P = Q))"
by simp
lemma IfmE: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (E p) = (\<exists>x. P x))"
by simp
lemma IfmA: " (!! x. Ifm (x#bs) p = P x) \<Longrightarrow> (Ifm bs (A p) = (\<forall>x. P x))"
by simp
fun not:: "fm \<Rightarrow> fm"
where
"not (NOT p) = p"
| "not T = F"
| "not F = T"
| "not p = NOT p"
lemma not[simp]: "Ifm bs (not p) = Ifm bs (NOT p)"
by (cases p) auto
definition conj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
where
"conj p q =
(if p = F \<or> q = F then F
else if p = T then q
else if q = T then p
else if p = q then p else And p q)"
lemma conj[simp]: "Ifm bs (conj p q) = Ifm bs (And p q)"
by (cases "p = F \<or> q = F", simp_all add: conj_def) (cases p, simp_all)
definition disj :: "fm \<Rightarrow> fm \<Rightarrow> fm"
where
"disj p q =
(if p = T \<or> q = T then T
else if p = F then q
else if q = F then p
else if p = q then p else Or p q)"
lemma disj[simp]: "Ifm bs (disj p q) = Ifm bs (Or p q)"
by (cases "p = T \<or> q = T", simp_all add: disj_def) (cases p, simp_all)
definition imp :: "fm \<Rightarrow> fm \<Rightarrow> fm"
where
"imp p q =
(if p = F \<or> q = T \<or> p = q then T
else if p = T then q
else if q = F then not p
else Imp p q)"
lemma imp[simp]: "Ifm bs (imp p q) = Ifm bs (Imp p q)"
by (cases "p = F \<or> q = T") (simp_all add: imp_def)
definition iff :: "fm \<Rightarrow> fm \<Rightarrow> fm"
where
"iff p q =
(if p = q then T
else if p = NOT q \<or> NOT p = q then F
else if p = F then not q
else if q = F then not p
else if p = T then q
else if q = T then p
else Iff p q)"
lemma iff[simp]: "Ifm bs (iff p q) = Ifm bs (Iff p q)"
by (unfold iff_def, cases "p = q", simp, cases "p = NOT q", simp) (cases "NOT p = q", auto)
lemma conj_simps:
"conj F Q = F"
"conj P F = F"
"conj T Q = Q"
"conj P T = P"
"conj P P = P"
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> conj P Q = And P Q"
by (simp_all add: conj_def)
lemma disj_simps:
"disj T Q = T"
"disj P T = T"
"disj F Q = Q"
"disj P F = P"
"disj P P = P"
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> disj P Q = Or P Q"
by (simp_all add: disj_def)
lemma imp_simps:
"imp F Q = T"
"imp P T = T"
"imp T Q = Q"
"imp P F = not P"
"imp P P = T"
"P \<noteq> T \<Longrightarrow> P \<noteq> F \<Longrightarrow> P \<noteq> Q \<Longrightarrow> Q \<noteq> T \<Longrightarrow> Q \<noteq> F \<Longrightarrow> imp P Q = Imp P Q"
by (simp_all add: imp_def)
lemma trivNOT: "p \<noteq> NOT p" "NOT p \<noteq> p"
by (induct p) auto
lemma iff_simps:
"iff p p = T"
"iff p (NOT p) = F"
"iff (NOT p) p = F"
"iff p F = not p"
"iff F p = not p"
"p \<noteq> NOT T \<Longrightarrow> iff T p = p"
"p\<noteq> NOT T \<Longrightarrow> iff p T = p"
"p\<noteq>q \<Longrightarrow> p\<noteq> NOT q \<Longrightarrow> q\<noteq> NOT p \<Longrightarrow> p\<noteq> F \<Longrightarrow> q\<noteq> F \<Longrightarrow> p \<noteq> T \<Longrightarrow> q \<noteq> T \<Longrightarrow> iff p q = Iff p q"
using trivNOT
by (simp_all add: iff_def, cases p, auto)
(* Quantifier freeness *)
fun qfree:: "fm \<Rightarrow> bool"
where
"qfree (E p) = False"
| "qfree (A p) = False"
| "qfree (NOT p) = qfree p"
| "qfree (And p q) = (qfree p \<and> qfree q)"
| "qfree (Or p q) = (qfree p \<and> qfree q)"
| "qfree (Imp p q) = (qfree p \<and> qfree q)"
| "qfree (Iff p q) = (qfree p \<and> qfree q)"
| "qfree p = True"
(* Boundedness and substitution *)
primrec numbound0:: "num \<Rightarrow> bool" (* a num is INDEPENDENT of Bound 0 *)
where
"numbound0 (C c) = True"
| "numbound0 (Bound n) = (n > 0)"
| "numbound0 (CN n c a) = (n \<noteq> 0 \<and> numbound0 a)"
| "numbound0 (Neg a) = numbound0 a"
| "numbound0 (Add a b) = (numbound0 a \<and> numbound0 b)"
| "numbound0 (Sub a b) = (numbound0 a \<and> numbound0 b)"
| "numbound0 (Mul i a) = numbound0 a"
lemma numbound0_I:
assumes nb: "numbound0 a"
shows "Inum (b#bs) a = Inum (b'#bs) a"
using nb by (induct a) simp_all
primrec bound0:: "fm \<Rightarrow> bool" (* A Formula is independent of Bound 0 *)
where
"bound0 T = True"
| "bound0 F = True"
| "bound0 (Lt a) = numbound0 a"
| "bound0 (Le a) = numbound0 a"
| "bound0 (Gt a) = numbound0 a"
| "bound0 (Ge a) = numbound0 a"
| "bound0 (Eq a) = numbound0 a"
| "bound0 (NEq a) = numbound0 a"
| "bound0 (NOT p) = bound0 p"
| "bound0 (And p q) = (bound0 p \<and> bound0 q)"
| "bound0 (Or p q) = (bound0 p \<and> bound0 q)"
| "bound0 (Imp p q) = ((bound0 p) \<and> (bound0 q))"
| "bound0 (Iff p q) = (bound0 p \<and> bound0 q)"
| "bound0 (E p) = False"
| "bound0 (A p) = False"
lemma bound0_I:
assumes bp: "bound0 p"
shows "Ifm (b#bs) p = Ifm (b'#bs) p"
using bp numbound0_I[where b="b" and bs="bs" and b'="b'"]
by (induct p) auto
lemma not_qf[simp]: "qfree p \<Longrightarrow> qfree (not p)"
by (cases p) auto
lemma not_bn[simp]: "bound0 p \<Longrightarrow> bound0 (not p)"
by (cases p) auto
lemma conj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (conj p q)"
using conj_def by auto
lemma conj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (conj p q)"
using conj_def by auto
lemma disj_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (disj p q)"
using disj_def by auto
lemma disj_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (disj p q)"
using disj_def by auto
lemma imp_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (imp p q)"
using imp_def by (cases "p=F \<or> q=T",simp_all add: imp_def)
lemma imp_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (imp p q)"
using imp_def by (cases "p=F \<or> q=T \<or> p=q",simp_all add: imp_def)
lemma iff_qf[simp]: "\<lbrakk>qfree p ; qfree q\<rbrakk> \<Longrightarrow> qfree (iff p q)"
unfolding iff_def by (cases "p = q") auto
lemma iff_nb[simp]: "\<lbrakk>bound0 p ; bound0 q\<rbrakk> \<Longrightarrow> bound0 (iff p q)"
using iff_def unfolding iff_def by (cases "p = q") auto
fun decrnum:: "num \<Rightarrow> num"
where
"decrnum (Bound n) = Bound (n - 1)"
| "decrnum (Neg a) = Neg (decrnum a)"
| "decrnum (Add a b) = Add (decrnum a) (decrnum b)"
| "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"
| "decrnum (Mul c a) = Mul c (decrnum a)"
| "decrnum (CN n c a) = CN (n - 1) c (decrnum a)"
| "decrnum a = a"
fun decr :: "fm \<Rightarrow> fm"
where
"decr (Lt a) = Lt (decrnum a)"
| "decr (Le a) = Le (decrnum a)"
| "decr (Gt a) = Gt (decrnum a)"
| "decr (Ge a) = Ge (decrnum a)"
| "decr (Eq a) = Eq (decrnum a)"
| "decr (NEq a) = NEq (decrnum a)"
| "decr (NOT p) = NOT (decr p)"
| "decr (And p q) = conj (decr p) (decr q)"
| "decr (Or p q) = disj (decr p) (decr q)"
| "decr (Imp p q) = imp (decr p) (decr q)"
| "decr (Iff p q) = iff (decr p) (decr q)"
| "decr p = p"
lemma decrnum:
assumes nb: "numbound0 t"
shows "Inum (x # bs) t = Inum bs (decrnum t)"
using nb by (induct t rule: decrnum.induct) simp_all
lemma decr:
assumes nb: "bound0 p"
shows "Ifm (x # bs) p = Ifm bs (decr p)"
using nb by (induct p rule: decr.induct) (simp_all add: decrnum)
lemma decr_qf: "bound0 p \<Longrightarrow> qfree (decr p)"
by (induct p) simp_all
fun isatom :: "fm \<Rightarrow> bool" (* test for atomicity *)
where
"isatom T = True"
| "isatom F = True"
| "isatom (Lt a) = True"
| "isatom (Le a) = True"
| "isatom (Gt a) = True"
| "isatom (Ge a) = True"
| "isatom (Eq a) = True"
| "isatom (NEq a) = True"
| "isatom p = False"
lemma bound0_qf: "bound0 p \<Longrightarrow> qfree p"
by (induct p) simp_all
definition djf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a \<Rightarrow> fm \<Rightarrow> fm"
where
"djf f p q =
(if q = T then T
else if q = F then f p
else (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q))"
definition evaldjf :: "('a \<Rightarrow> fm) \<Rightarrow> 'a list \<Rightarrow> fm"
where "evaldjf f ps = foldr (djf f) ps F"
lemma djf_Or: "Ifm bs (djf f p q) = Ifm bs (Or (f p) q)"
by (cases "q = T", simp add: djf_def, cases "q = F", simp add: djf_def)
(cases "f p", simp_all add: Let_def djf_def)
lemma djf_simps:
"djf f p T = T"
"djf f p F = f p"
"q \<noteq> T \<Longrightarrow> q \<noteq> F \<Longrightarrow> djf f p q = (let fp = f p in case fp of T \<Rightarrow> T | F \<Rightarrow> q | _ \<Rightarrow> Or (f p) q)"
by (simp_all add: djf_def)
lemma evaldjf_ex: "Ifm bs (evaldjf f ps) \<longleftrightarrow> (\<exists>p \<in> set ps. Ifm bs (f p))"
by (induct ps) (simp_all add: evaldjf_def djf_Or)
lemma evaldjf_bound0:
assumes nb: "\<forall>x\<in> set xs. bound0 (f x)"
shows "bound0 (evaldjf f xs)"
using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto)
lemma evaldjf_qf:
assumes nb: "\<forall>x\<in> set xs. qfree (f x)"
shows "qfree (evaldjf f xs)"
using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto)
fun disjuncts :: "fm \<Rightarrow> fm list"
where
"disjuncts (Or p q) = disjuncts p @ disjuncts q"
| "disjuncts F = []"
| "disjuncts p = [p]"
lemma disjuncts: "(\<exists>q\<in> set (disjuncts p). Ifm bs q) = Ifm bs p"
by (induct p rule: disjuncts.induct) auto
lemma disjuncts_nb: "bound0 p \<Longrightarrow> \<forall>q\<in> set (disjuncts p). bound0 q"
proof -
assume nb: "bound0 p"
then have "list_all bound0 (disjuncts p)"
by (induct p rule: disjuncts.induct) auto
then show ?thesis
by (simp only: list_all_iff)
qed
lemma disjuncts_qf: "qfree p \<Longrightarrow> \<forall>q\<in> set (disjuncts p). qfree q"
proof -
assume qf: "qfree p"
then have "list_all qfree (disjuncts p)"
by (induct p rule: disjuncts.induct) auto
then show ?thesis
by (simp only: list_all_iff)
qed
definition DJ :: "(fm \<Rightarrow> fm) \<Rightarrow> fm \<Rightarrow> fm"
where "DJ f p = evaldjf f (disjuncts p)"
lemma DJ:
assumes fdj: "\<forall>p q. Ifm bs (f (Or p q)) = Ifm bs (Or (f p) (f q))"
and fF: "f F = F"
shows "Ifm bs (DJ f p) = Ifm bs (f p)"
proof -
have "Ifm bs (DJ f p) = (\<exists>q \<in> set (disjuncts p). Ifm bs (f q))"
by (simp add: DJ_def evaldjf_ex)
also have "\<dots> = Ifm bs (f p)"
using fdj fF by (induct p rule: disjuncts.induct) auto
finally show ?thesis .
qed
lemma DJ_qf:
assumes fqf: "\<forall>p. qfree p \<longrightarrow> qfree (f p)"
shows "\<forall>p. qfree p \<longrightarrow> qfree (DJ f p) "
proof clarify
fix p
assume qf: "qfree p"
have th: "DJ f p = evaldjf f (disjuncts p)"
by (simp add: DJ_def)
from disjuncts_qf[OF qf] have "\<forall>q\<in> set (disjuncts p). qfree q" .
with fqf have th':"\<forall>q\<in> set (disjuncts p). qfree (f q)"
by blast
from evaldjf_qf[OF th'] th show "qfree (DJ f p)"
by simp
qed
lemma DJ_qe:
assumes qe: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"
shows "\<forall>bs p. qfree p \<longrightarrow> qfree (DJ qe p) \<and> (Ifm bs ((DJ qe p)) = Ifm bs (E p))"
proof clarify
fix p :: fm
fix bs
assume qf: "qfree p"
from qe have qth: "\<forall>p. qfree p \<longrightarrow> qfree (qe p)"
by blast
from DJ_qf[OF qth] qf have qfth: "qfree (DJ qe p)"
by auto
have "Ifm bs (DJ qe p) \<longleftrightarrow> (\<exists>q\<in> set (disjuncts p). Ifm bs (qe q))"
by (simp add: DJ_def evaldjf_ex)
also have "\<dots> \<longleftrightarrow> (\<exists>q \<in> set(disjuncts p). Ifm bs (E q))"
using qe disjuncts_qf[OF qf] by auto
also have "\<dots> = Ifm bs (E p)"
by (induct p rule: disjuncts.induct) auto
finally show "qfree (DJ qe p) \<and> Ifm bs (DJ qe p) = Ifm bs (E p)"
using qfth by blast
qed
(* Simplification *)
fun maxcoeff:: "num \<Rightarrow> int"
where
"maxcoeff (C i) = \<bar>i\<bar>"
| "maxcoeff (CN n c t) = max \<bar>c\<bar> (maxcoeff t)"
| "maxcoeff t = 1"
lemma maxcoeff_pos: "maxcoeff t \<ge> 0"
by (induct t rule: maxcoeff.induct, auto)
fun numgcdh:: "num \<Rightarrow> int \<Rightarrow> int"
where
"numgcdh (C i) = (\<lambda>g. gcd i g)"
| "numgcdh (CN n c t) = (\<lambda>g. gcd c (numgcdh t g))"
| "numgcdh t = (\<lambda>g. 1)"
definition numgcd :: "num \<Rightarrow> int"
where "numgcd t = numgcdh t (maxcoeff t)"
fun reducecoeffh:: "num \<Rightarrow> int \<Rightarrow> num"
where
"reducecoeffh (C i) = (\<lambda>g. C (i div g))"
| "reducecoeffh (CN n c t) = (\<lambda>g. CN n (c div g) (reducecoeffh t g))"
| "reducecoeffh t = (\<lambda>g. t)"
definition reducecoeff :: "num \<Rightarrow> num"
where
"reducecoeff t =
(let g = numgcd t
in if g = 0 then C 0 else if g = 1 then t else reducecoeffh t g)"
fun dvdnumcoeff:: "num \<Rightarrow> int \<Rightarrow> bool"
where
"dvdnumcoeff (C i) = (\<lambda>g. g dvd i)"
| "dvdnumcoeff (CN n c t) = (\<lambda>g. g dvd c \<and> dvdnumcoeff t g)"
| "dvdnumcoeff t = (\<lambda>g. False)"
lemma dvdnumcoeff_trans:
assumes gdg: "g dvd g'"
and dgt':"dvdnumcoeff t g'"
shows "dvdnumcoeff t g"
using dgt' gdg
by (induct t rule: dvdnumcoeff.induct) (simp_all add: gdg dvd_trans[OF gdg])
declare dvd_trans [trans add]
lemma natabs0: "nat \<bar>x\<bar> = 0 \<longleftrightarrow> x = 0"
by arith
lemma numgcd0:
assumes g0: "numgcd t = 0"
shows "Inum bs t = 0"
using g0[simplified numgcd_def]
by (induct t rule: numgcdh.induct) (auto simp add: natabs0 maxcoeff_pos max.absorb2)
lemma numgcdh_pos:
assumes gp: "g \<ge> 0"
shows "numgcdh t g \<ge> 0"
using gp by (induct t rule: numgcdh.induct) auto
lemma numgcd_pos: "numgcd t \<ge>0"
by (simp add: numgcd_def numgcdh_pos maxcoeff_pos)
lemma reducecoeffh:
assumes gt: "dvdnumcoeff t g"
and gp: "g > 0"
shows "real_of_int g *(Inum bs (reducecoeffh t g)) = Inum bs t"
using gt
proof (induct t rule: reducecoeffh.induct)
case (1 i)
then have gd: "g dvd i"
by simp
with assms show ?case
by (simp add: real_of_int_div[OF gd])
next
case (2 n c t)
then have gd: "g dvd c"
by simp
from assms 2 show ?case
by (simp add: real_of_int_div[OF gd] algebra_simps)
qed (auto simp add: numgcd_def gp)
fun ismaxcoeff:: "num \<Rightarrow> int \<Rightarrow> bool"
where
"ismaxcoeff (C i) = (\<lambda>x. \<bar>i\<bar> \<le> x)"
| "ismaxcoeff (CN n c t) = (\<lambda>x. \<bar>c\<bar> \<le> x \<and> ismaxcoeff t x)"
| "ismaxcoeff t = (\<lambda>x. True)"
lemma ismaxcoeff_mono: "ismaxcoeff t c \<Longrightarrow> c \<le> c' \<Longrightarrow> ismaxcoeff t c'"
by (induct t rule: ismaxcoeff.induct) auto
lemma maxcoeff_ismaxcoeff: "ismaxcoeff t (maxcoeff t)"
proof (induct t rule: maxcoeff.induct)
case (2 n c t)
then have H:"ismaxcoeff t (maxcoeff t)" .
have thh: "maxcoeff t \<le> max \<bar>c\<bar> (maxcoeff t)"
by simp
from ismaxcoeff_mono[OF H thh] show ?case
by simp
qed simp_all
lemma zgcd_gt1:
"\<bar>i\<bar> > 1 \<and> \<bar>j\<bar> > 1 \<or> \<bar>i\<bar> = 0 \<and> \<bar>j\<bar> > 1 \<or> \<bar>i\<bar> > 1 \<and> \<bar>j\<bar> = 0"
if "gcd i j > 1" for i j :: int
proof -
have "\<bar>k\<bar> \<le> 1 \<longleftrightarrow> k = - 1 \<or> k = 0 \<or> k = 1" for k :: int
by auto
with that show ?thesis
by (auto simp add: not_less)
qed
lemma numgcdh0:"numgcdh t m = 0 \<Longrightarrow> m =0"
by (induct t rule: numgcdh.induct) auto
lemma dvdnumcoeff_aux:
assumes "ismaxcoeff t m"
and mp: "m \<ge> 0"
and "numgcdh t m > 1"
shows "dvdnumcoeff t (numgcdh t m)"
using assms
proof (induct t rule: numgcdh.induct)
case (2 n c t)
let ?g = "numgcdh t m"
from 2 have th: "gcd c ?g > 1"
by simp
from zgcd_gt1[OF th] numgcdh_pos[OF mp, where t="t"]
consider "\<bar>c\<bar> > 1" "?g > 1" | "\<bar>c\<bar> = 0" "?g > 1" | "?g = 0"
by auto
then show ?case
proof cases
case 1
with 2 have th: "dvdnumcoeff t ?g"
by simp
have th': "gcd c ?g dvd ?g"
by simp
from dvdnumcoeff_trans[OF th' th] show ?thesis
by simp
next
case "2'": 2
with 2 have th: "dvdnumcoeff t ?g"
by simp
have th': "gcd c ?g dvd ?g"
by simp
from dvdnumcoeff_trans[OF th' th] show ?thesis
by simp
next
case 3
then have "m = 0" by (rule numgcdh0)
with 2 3 show ?thesis by simp
qed
qed auto
lemma dvdnumcoeff_aux2:
assumes "numgcd t > 1"
shows "dvdnumcoeff t (numgcd t) \<and> numgcd t > 0"
using assms
proof (simp add: numgcd_def)
let ?mc = "maxcoeff t"
let ?g = "numgcdh t ?mc"
have th1: "ismaxcoeff t ?mc"
by (rule maxcoeff_ismaxcoeff)
have th2: "?mc \<ge> 0"
by (rule maxcoeff_pos)
assume H: "numgcdh t ?mc > 1"
from dvdnumcoeff_aux[OF th1 th2 H] show "dvdnumcoeff t ?g" .
qed
lemma reducecoeff: "real_of_int (numgcd t) * (Inum bs (reducecoeff t)) = Inum bs t"
proof -
let ?g = "numgcd t"
have "?g \<ge> 0"
by (simp add: numgcd_pos)
then consider "?g = 0" | "?g = 1" | "?g > 1" by atomize_elim auto
then show ?thesis
proof cases
case 1
then show ?thesis by (simp add: numgcd0)
next
case 2
then show ?thesis by (simp add: reducecoeff_def)
next
case g1: 3
from dvdnumcoeff_aux2[OF g1] have th1: "dvdnumcoeff t ?g" and g0: "?g > 0"
by blast+
from reducecoeffh[OF th1 g0, where bs="bs"] g1 show ?thesis
by (simp add: reducecoeff_def Let_def)
qed
qed
lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)"
by (induct t rule: reducecoeffh.induct) auto
lemma reducecoeff_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeff t)"
using reducecoeffh_numbound0 by (simp add: reducecoeff_def Let_def)
fun numadd:: "num \<Rightarrow> num \<Rightarrow> num"
where
"numadd (CN n1 c1 r1) (CN n2 c2 r2) =
(if n1 = n2 then
(let c = c1 + c2
in (if c = 0 then numadd r1 r2 else CN n1 c (numadd r1 r2)))
else if n1 \<le> n2 then (CN n1 c1 (numadd r1 (CN n2 c2 r2)))
else (CN n2 c2 (numadd (CN n1 c1 r1) r2)))"
| "numadd (CN n1 c1 r1) t = CN n1 c1 (numadd r1 t)"
| "numadd t (CN n2 c2 r2) = CN n2 c2 (numadd t r2)"
| "numadd (C b1) (C b2) = C (b1 + b2)"
| "numadd a b = Add a b"
lemma numadd [simp]: "Inum bs (numadd t s) = Inum bs (Add t s)"
by (induct t s rule: numadd.induct) (simp_all add: Let_def algebra_simps add_eq_0_iff)
lemma numadd_nb [simp]: "numbound0 t \<Longrightarrow> numbound0 s \<Longrightarrow> numbound0 (numadd t s)"
by (induct t s rule: numadd.induct) (simp_all add: Let_def)
fun nummul:: "num \<Rightarrow> int \<Rightarrow> num"
where
"nummul (C j) = (\<lambda>i. C (i * j))"
| "nummul (CN n c a) = (\<lambda>i. CN n (i * c) (nummul a i))"
| "nummul t = (\<lambda>i. Mul i t)"
lemma nummul[simp]: "\<And>i. Inum bs (nummul t i) = Inum bs (Mul i t)"
by (induct t rule: nummul.induct) (auto simp add: algebra_simps)
lemma nummul_nb[simp]: "\<And>i. numbound0 t \<Longrightarrow> numbound0 (nummul t i)"
by (induct t rule: nummul.induct) auto
definition numneg :: "num \<Rightarrow> num"
where "numneg t = nummul t (- 1)"
definition numsub :: "num \<Rightarrow> num \<Rightarrow> num"
where "numsub s t = (if s = t then C 0 else numadd s (numneg t))"
lemma numneg[simp]: "Inum bs (numneg t) = Inum bs (Neg t)"
using numneg_def by simp
lemma numneg_nb[simp]: "numbound0 t \<Longrightarrow> numbound0 (numneg t)"
using numneg_def by simp
lemma numsub[simp]: "Inum bs (numsub a b) = Inum bs (Sub a b)"
using numsub_def by simp
lemma numsub_nb[simp]: "\<lbrakk> numbound0 t ; numbound0 s\<rbrakk> \<Longrightarrow> numbound0 (numsub t s)"
using numsub_def by simp
primrec simpnum:: "num \<Rightarrow> num"
where
"simpnum (C j) = C j"
| "simpnum (Bound n) = CN n 1 (C 0)"
| "simpnum (Neg t) = numneg (simpnum t)"
| "simpnum (Add t s) = numadd (simpnum t) (simpnum s)"
| "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"
| "simpnum (Mul i t) = (if i = 0 then C 0 else nummul (simpnum t) i)"
| "simpnum (CN n c t) = (if c = 0 then simpnum t else numadd (CN n c (C 0)) (simpnum t))"
lemma simpnum_ci[simp]: "Inum bs (simpnum t) = Inum bs t"
by (induct t) simp_all
lemma simpnum_numbound0[simp]: "numbound0 t \<Longrightarrow> numbound0 (simpnum t)"
by (induct t) simp_all
fun nozerocoeff:: "num \<Rightarrow> bool"
where
"nozerocoeff (C c) = True"
| "nozerocoeff (CN n c t) = (c \<noteq> 0 \<and> nozerocoeff t)"
| "nozerocoeff t = True"
lemma numadd_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numadd a b)"
by (induct a b rule: numadd.induct) (simp_all add: Let_def)
lemma nummul_nz : "\<And>i. i\<noteq>0 \<Longrightarrow> nozerocoeff a \<Longrightarrow> nozerocoeff (nummul a i)"
by (induct a rule: nummul.induct) (auto simp add: Let_def numadd_nz)
lemma numneg_nz : "nozerocoeff a \<Longrightarrow> nozerocoeff (numneg a)"
by (simp add: numneg_def nummul_nz)
lemma numsub_nz: "nozerocoeff a \<Longrightarrow> nozerocoeff b \<Longrightarrow> nozerocoeff (numsub a b)"
by (simp add: numsub_def numneg_nz numadd_nz)
lemma simpnum_nz: "nozerocoeff (simpnum t)"
by (induct t) (simp_all add: numadd_nz numneg_nz numsub_nz nummul_nz)
lemma maxcoeff_nz: "nozerocoeff t \<Longrightarrow> maxcoeff t = 0 \<Longrightarrow> t = C 0"
proof (induct t rule: maxcoeff.induct)
case (2 n c t)
then have cnz: "c \<noteq> 0" and mx: "max \<bar>c\<bar> (maxcoeff t) = 0"
by simp_all
have "max \<bar>c\<bar> (maxcoeff t) \<ge> \<bar>c\<bar>"
by simp
with cnz have "max \<bar>c\<bar> (maxcoeff t) > 0"
by arith
with 2 show ?case
by simp
qed auto
lemma numgcd_nz:
assumes nz: "nozerocoeff t"
and g0: "numgcd t = 0"
shows "t = C 0"
proof -
from g0 have th:"numgcdh t (maxcoeff t) = 0"
by (simp add: numgcd_def)
from numgcdh0[OF th] have th:"maxcoeff t = 0" .
from maxcoeff_nz[OF nz th] show ?thesis .
qed
definition simp_num_pair :: "(num \<times> int) \<Rightarrow> num \<times> int"
where
"simp_num_pair =
(\<lambda>(t,n).
(if n = 0 then (C 0, 0)
else
(let t' = simpnum t ; g = numgcd t' in
if g > 1 then
(let g' = gcd n g
in if g' = 1 then (t', n) else (reducecoeffh t' g', n div g'))
else (t', n))))"
lemma simp_num_pair_ci:
shows "((\<lambda>(t,n). Inum bs t / real_of_int n) (simp_num_pair (t,n))) =
((\<lambda>(t,n). Inum bs t / real_of_int n) (t, n))"
(is "?lhs = ?rhs")
proof -
let ?t' = "simpnum t"
let ?g = "numgcd ?t'"
let ?g' = "gcd n ?g"
show ?thesis
proof (cases "n = 0")
case True
then show ?thesis
by (simp add: Let_def simp_num_pair_def)
next
case nnz: False
show ?thesis
proof (cases "?g > 1")
case False
then show ?thesis by (simp add: Let_def simp_num_pair_def)
next
case g1: True
then have g0: "?g > 0"
by simp
from g1 nnz have gp0: "?g' \<noteq> 0"
by simp
then have g'p: "?g' > 0"
using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith
then consider "?g' = 1" | "?g' > 1" by arith
then show ?thesis
proof cases
case 1
then show ?thesis
by (simp add: Let_def simp_num_pair_def)
next
case g'1: 2
from dvdnumcoeff_aux2[OF g1] have th1: "dvdnumcoeff ?t' ?g" ..
let ?tt = "reducecoeffh ?t' ?g'"
let ?t = "Inum bs ?tt"
have gpdg: "?g' dvd ?g" by simp
have gpdd: "?g' dvd n" by simp
have gpdgp: "?g' dvd ?g'" by simp
from reducecoeffh[OF dvdnumcoeff_trans[OF gpdg th1] g'p]
have th2:"real_of_int ?g' * ?t = Inum bs ?t'"
by simp
from g1 g'1 have "?lhs = ?t / real_of_int (n div ?g')"
by (simp add: simp_num_pair_def Let_def)
also have "\<dots> = (real_of_int ?g' * ?t) / (real_of_int ?g' * (real_of_int (n div ?g')))"
by simp
also have "\<dots> = (Inum bs ?t' / real_of_int n)"
using real_of_int_div[OF gpdd] th2 gp0 by simp
finally have "?lhs = Inum bs t / real_of_int n"
by simp
then show ?thesis
by (simp add: simp_num_pair_def)
qed
qed
qed
qed
lemma simp_num_pair_l:
assumes tnb: "numbound0 t"
and np: "n > 0"
and tn: "simp_num_pair (t, n) = (t', n')"
shows "numbound0 t' \<and> n' > 0"
proof -
let ?t' = "simpnum t"
let ?g = "numgcd ?t'"
let ?g' = "gcd n ?g"
show ?thesis
proof (cases "n = 0")
case True
then show ?thesis
using assms by (simp add: Let_def simp_num_pair_def)
next
case nnz: False
show ?thesis
proof (cases "?g > 1")
case False
then show ?thesis
using assms by (auto simp add: Let_def simp_num_pair_def)
next
case g1: True
then have g0: "?g > 0" by simp
from g1 nnz have gp0: "?g' \<noteq> 0" by simp
then have g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"]
by arith
then consider "?g'= 1" | "?g' > 1" by arith
then show ?thesis
proof cases
case 1
then show ?thesis
using assms g1 by (auto simp add: Let_def simp_num_pair_def)
next
case g'1: 2
have gpdg: "?g' dvd ?g" by simp
have gpdd: "?g' dvd n" by simp
have gpdgp: "?g' dvd ?g'" by simp
from zdvd_imp_le[OF gpdd np] have g'n: "?g' \<le> n" .
from zdiv_mono1[OF g'n g'p, simplified div_self[OF gp0]] have "n div ?g' > 0"
by simp
then show ?thesis
using assms g1 g'1
by (auto simp add: simp_num_pair_def Let_def reducecoeffh_numbound0)
qed
qed
qed
qed
fun simpfm :: "fm \<Rightarrow> fm"
where
"simpfm (And p q) = conj (simpfm p) (simpfm q)"
| "simpfm (Or p q) = disj (simpfm p) (simpfm q)"
| "simpfm (Imp p q) = imp (simpfm p) (simpfm q)"
| "simpfm (Iff p q) = iff (simpfm p) (simpfm q)"
| "simpfm (NOT p) = not (simpfm p)"
| "simpfm (Lt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v < 0) then T else F | _ \<Rightarrow> Lt a')"
| "simpfm (Le a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<le> 0) then T else F | _ \<Rightarrow> Le a')"
| "simpfm (Gt a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v > 0) then T else F | _ \<Rightarrow> Gt a')"
| "simpfm (Ge a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<ge> 0) then T else F | _ \<Rightarrow> Ge a')"
| "simpfm (Eq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v = 0) then T else F | _ \<Rightarrow> Eq a')"
| "simpfm (NEq a) = (let a' = simpnum a in case a' of C v \<Rightarrow> if (v \<noteq> 0) then T else F | _ \<Rightarrow> NEq a')"
| "simpfm p = p"
lemma simpfm: "Ifm bs (simpfm p) = Ifm bs p"
proof (induct p rule: simpfm.induct)
case (6 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
next
case (7 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
next
case (8 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
next
case (9 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
next
case (10 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
next
case (11 a)
let ?sa = "simpnum a"
from simpnum_ci have sa: "Inum bs ?sa = Inum bs a"
by simp
consider v where "?sa = C v" | "\<not> (\<exists>v. ?sa = C v)" by blast
then show ?case
proof cases
case 1
then show ?thesis using sa by simp
next
case 2
then show ?thesis using sa by (cases ?sa) (simp_all add: Let_def)
qed
qed (induct p rule: simpfm.induct, simp_all)
lemma simpfm_bound0: "bound0 p \<Longrightarrow> bound0 (simpfm p)"
proof (induct p rule: simpfm.induct)
case (6 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
next
case (7 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
next
case (8 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
next
case (9 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
next
case (10 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
next
case (11 a)
then have nb: "numbound0 a" by simp
then have "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
then show ?case by (cases "simpnum a") (auto simp add: Let_def)
qed (auto simp add: disj_def imp_def iff_def conj_def)
lemma simpfm_qf: "qfree p \<Longrightarrow> qfree (simpfm p)"
apply (induct p rule: simpfm.induct)
apply (auto simp add: Let_def)
apply (case_tac "simpnum a", auto)+
done
fun prep :: "fm \<Rightarrow> fm"
where
"prep (E T) = T"
| "prep (E F) = F"
| "prep (E (Or p q)) = disj (prep (E p)) (prep (E q))"
| "prep (E (Imp p q)) = disj (prep (E (NOT p))) (prep (E q))"
| "prep (E (Iff p q)) = disj (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))"
| "prep (E (NOT (And p q))) = disj (prep (E (NOT p))) (prep (E(NOT q)))"
| "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"
| "prep (E (NOT (Iff p q))) = disj (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"
| "prep (E p) = E (prep p)"
| "prep (A (And p q)) = conj (prep (A p)) (prep (A q))"
| "prep (A p) = prep (NOT (E (NOT p)))"
| "prep (NOT (NOT p)) = prep p"
| "prep (NOT (And p q)) = disj (prep (NOT p)) (prep (NOT q))"
| "prep (NOT (A p)) = prep (E (NOT p))"
| "prep (NOT (Or p q)) = conj (prep (NOT p)) (prep (NOT q))"
| "prep (NOT (Imp p q)) = conj (prep p) (prep (NOT q))"
| "prep (NOT (Iff p q)) = disj (prep (And p (NOT q))) (prep (And (NOT p) q))"
| "prep (NOT p) = not (prep p)"
| "prep (Or p q) = disj (prep p) (prep q)"
| "prep (And p q) = conj (prep p) (prep q)"
| "prep (Imp p q) = prep (Or (NOT p) q)"
| "prep (Iff p q) = disj (prep (And p q)) (prep (And (NOT p) (NOT q)))"
| "prep p = p"
lemma prep: "\<And>bs. Ifm bs (prep p) = Ifm bs p"
by (induct p rule: prep.induct) auto
(* Generic quantifier elimination *)
fun qelim :: "fm \<Rightarrow> (fm \<Rightarrow> fm) \<Rightarrow> fm"
where
"qelim (E p) = (\<lambda>qe. DJ qe (qelim p qe))"
| "qelim (A p) = (\<lambda>qe. not (qe ((qelim (NOT p) qe))))"
| "qelim (NOT p) = (\<lambda>qe. not (qelim p qe))"
| "qelim (And p q) = (\<lambda>qe. conj (qelim p qe) (qelim q qe))"
| "qelim (Or p q) = (\<lambda>qe. disj (qelim p qe) (qelim q qe))"
| "qelim (Imp p q) = (\<lambda>qe. imp (qelim p qe) (qelim q qe))"
| "qelim (Iff p q) = (\<lambda>qe. iff (qelim p qe) (qelim q qe))"
| "qelim p = (\<lambda>y. simpfm p)"
lemma qelim_ci:
assumes qe_inv: "\<forall>bs p. qfree p \<longrightarrow> qfree (qe p) \<and> (Ifm bs (qe p) = Ifm bs (E p))"
shows "\<And>bs. qfree (qelim p qe) \<and> (Ifm bs (qelim p qe) = Ifm bs p)"
using qe_inv DJ_qe[OF qe_inv]
by (induct p rule: qelim.induct)
(auto simp add: simpfm simpfm_qf simp del: simpfm.simps)
fun minusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of -\<infinity>*)
where
"minusinf (And p q) = conj (minusinf p) (minusinf q)"
| "minusinf (Or p q) = disj (minusinf p) (minusinf q)"
| "minusinf (Eq (CN 0 c e)) = F"
| "minusinf (NEq (CN 0 c e)) = T"
| "minusinf (Lt (CN 0 c e)) = T"
| "minusinf (Le (CN 0 c e)) = T"
| "minusinf (Gt (CN 0 c e)) = F"
| "minusinf (Ge (CN 0 c e)) = F"
| "minusinf p = p"
fun plusinf:: "fm \<Rightarrow> fm" (* Virtual substitution of +\<infinity>*)
where
"plusinf (And p q) = conj (plusinf p) (plusinf q)"
| "plusinf (Or p q) = disj (plusinf p) (plusinf q)"
| "plusinf (Eq (CN 0 c e)) = F"
| "plusinf (NEq (CN 0 c e)) = T"
| "plusinf (Lt (CN 0 c e)) = F"
| "plusinf (Le (CN 0 c e)) = F"
| "plusinf (Gt (CN 0 c e)) = T"
| "plusinf (Ge (CN 0 c e)) = T"
| "plusinf p = p"
fun isrlfm :: "fm \<Rightarrow> bool" (* Linearity test for fm *)
where
"isrlfm (And p q) = (isrlfm p \<and> isrlfm q)"
| "isrlfm (Or p q) = (isrlfm p \<and> isrlfm q)"
| "isrlfm (Eq (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm (NEq (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm (Lt (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm (Le (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm (Gt (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm (Ge (CN 0 c e)) = (c>0 \<and> numbound0 e)"
| "isrlfm p = (isatom p \<and> (bound0 p))"
(* splits the bounded from the unbounded part*)
fun rsplit0 :: "num \<Rightarrow> int \<times> num"
where
"rsplit0 (Bound 0) = (1,C 0)"
| "rsplit0 (Add a b) = (let (ca,ta) = rsplit0 a; (cb,tb) = rsplit0 b in (ca + cb, Add ta tb))"
| "rsplit0 (Sub a b) = rsplit0 (Add a (Neg b))"
| "rsplit0 (Neg a) = (let (c,t) = rsplit0 a in (- c, Neg t))"
| "rsplit0 (Mul c a) = (let (ca,ta) = rsplit0 a in (c * ca, Mul c ta))"
| "rsplit0 (CN 0 c a) = (let (ca,ta) = rsplit0 a in (c + ca, ta))"
| "rsplit0 (CN n c a) = (let (ca,ta) = rsplit0 a in (ca, CN n c ta))"
| "rsplit0 t = (0,t)"
lemma rsplit0: "Inum bs ((case_prod (CN 0)) (rsplit0 t)) = Inum bs t \<and> numbound0 (snd (rsplit0 t))"
proof (induct t rule: rsplit0.induct)
case (2 a b)
let ?sa = "rsplit0 a"
let ?sb = "rsplit0 b"
let ?ca = "fst ?sa"
let ?cb = "fst ?sb"
let ?ta = "snd ?sa"
let ?tb = "snd ?sb"
from 2 have nb: "numbound0 (snd(rsplit0 (Add a b)))"
by (cases "rsplit0 a") (auto simp add: Let_def split_def)
have "Inum bs ((case_prod (CN 0)) (rsplit0 (Add a b))) =
Inum bs ((case_prod (CN 0)) ?sa)+Inum bs ((case_prod (CN 0)) ?sb)"
by (simp add: Let_def split_def algebra_simps)
also have "\<dots> = Inum bs a + Inum bs b"
using 2 by (cases "rsplit0 a") auto
finally show ?case
using nb by simp
qed (auto simp add: Let_def split_def algebra_simps, simp add: distrib_left[symmetric])
(* Linearize a formula*)
definition lt :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"lt c t = (if c = 0 then (Lt t) else if c > 0 then (Lt (CN 0 c t))
else (Gt (CN 0 (-c) (Neg t))))"
definition le :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"le c t = (if c = 0 then (Le t) else if c > 0 then (Le (CN 0 c t))
else (Ge (CN 0 (-c) (Neg t))))"
definition gt :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"gt c t = (if c = 0 then (Gt t) else if c > 0 then (Gt (CN 0 c t))
else (Lt (CN 0 (-c) (Neg t))))"
definition ge :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"ge c t = (if c = 0 then (Ge t) else if c > 0 then (Ge (CN 0 c t))
else (Le (CN 0 (-c) (Neg t))))"
definition eq :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"eq c t = (if c = 0 then (Eq t) else if c > 0 then (Eq (CN 0 c t))
else (Eq (CN 0 (-c) (Neg t))))"
definition neq :: "int \<Rightarrow> num \<Rightarrow> fm"
where
"neq c t = (if c = 0 then (NEq t) else if c > 0 then (NEq (CN 0 c t))
else (NEq (CN 0 (-c) (Neg t))))"
lemma lt: "numnoabs t \<Longrightarrow> Ifm bs (case_prod lt (rsplit0 t)) =
Ifm bs (Lt t) \<and> isrlfm (case_prod lt (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: lt_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma le: "numnoabs t \<Longrightarrow> Ifm bs (case_prod le (rsplit0 t)) =
Ifm bs (Le t) \<and> isrlfm (case_prod le (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: le_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma gt: "numnoabs t \<Longrightarrow> Ifm bs (case_prod gt (rsplit0 t)) =
Ifm bs (Gt t) \<and> isrlfm (case_prod gt (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: gt_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma ge: "numnoabs t \<Longrightarrow> Ifm bs (case_prod ge (rsplit0 t)) =
Ifm bs (Ge t) \<and> isrlfm (case_prod ge (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: ge_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma eq: "numnoabs t \<Longrightarrow> Ifm bs (case_prod eq (rsplit0 t)) =
Ifm bs (Eq t) \<and> isrlfm (case_prod eq (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: eq_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma neq: "numnoabs t \<Longrightarrow> Ifm bs (case_prod neq (rsplit0 t)) =
Ifm bs (NEq t) \<and> isrlfm (case_prod neq (rsplit0 t))"
using rsplit0[where bs = "bs" and t="t"]
by (auto simp add: neq_def split_def, cases "snd(rsplit0 t)", auto,
rename_tac nat a b, case_tac "nat", auto)
lemma conj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (conj p q)"
by (auto simp add: conj_def)
lemma disj_lin: "isrlfm p \<Longrightarrow> isrlfm q \<Longrightarrow> isrlfm (disj p q)"
by (auto simp add: disj_def)
fun rlfm :: "fm \<Rightarrow> fm"
where
"rlfm (And p q) = conj (rlfm p) (rlfm q)"
| "rlfm (Or p q) = disj (rlfm p) (rlfm q)"
| "rlfm (Imp p q) = disj (rlfm (NOT p)) (rlfm q)"
| "rlfm (Iff p q) = disj (conj (rlfm p) (rlfm q)) (conj (rlfm (NOT p)) (rlfm (NOT q)))"
| "rlfm (Lt a) = case_prod lt (rsplit0 a)"
| "rlfm (Le a) = case_prod le (rsplit0 a)"
| "rlfm (Gt a) = case_prod gt (rsplit0 a)"
| "rlfm (Ge a) = case_prod ge (rsplit0 a)"
| "rlfm (Eq a) = case_prod eq (rsplit0 a)"
| "rlfm (NEq a) = case_prod neq (rsplit0 a)"
| "rlfm (NOT (And p q)) = disj (rlfm (NOT p)) (rlfm (NOT q))"
| "rlfm (NOT (Or p q)) = conj (rlfm (NOT p)) (rlfm (NOT q))"
| "rlfm (NOT (Imp p q)) = conj (rlfm p) (rlfm (NOT q))"
| "rlfm (NOT (Iff p q)) = disj (conj(rlfm p) (rlfm(NOT q))) (conj(rlfm(NOT p)) (rlfm q))"
| "rlfm (NOT (NOT p)) = rlfm p"
| "rlfm (NOT T) = F"
| "rlfm (NOT F) = T"
| "rlfm (NOT (Lt a)) = rlfm (Ge a)"
| "rlfm (NOT (Le a)) = rlfm (Gt a)"
| "rlfm (NOT (Gt a)) = rlfm (Le a)"
| "rlfm (NOT (Ge a)) = rlfm (Lt a)"
| "rlfm (NOT (Eq a)) = rlfm (NEq a)"
| "rlfm (NOT (NEq a)) = rlfm (Eq a)"
| "rlfm p = p"
lemma rlfm_I:
assumes qfp: "qfree p"
shows "(Ifm bs (rlfm p) = Ifm bs p) \<and> isrlfm (rlfm p)"
using qfp
by (induct p rule: rlfm.induct) (auto simp add: lt le gt ge eq neq conj_lin disj_lin)
(* Operations needed for Ferrante and Rackoff *)
lemma rminusinf_inf:
assumes lp: "isrlfm p"
shows "\<exists>z. \<forall>x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\<exists>z. \<forall>x. ?P z x p")
using lp
proof (induct p rule: minusinf.induct)
case (1 p q)
then show ?case
apply auto
apply (rule_tac x= "min z za" in exI)
apply auto
done
next
case (2 p q)
then show ?case
apply auto
apply (rule_tac x= "min z za" in exI)
apply auto
done
next
case (3 c e)
from 3 have nb: "numbound0 e" by simp
from 3 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a#bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
then have "real_of_int c * x + ?e \<noteq> 0" by simp
with xz have "?P ?z x (Eq (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (Eq (CN 0 c e))" by simp
then show ?case by blast
next
case (4 c e)
from 4 have nb: "numbound0 e" by simp
from 4 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
then have "real_of_int c * x + ?e \<noteq> 0" by simp
with xz have "?P ?z x (NEq (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (NEq (CN 0 c e))" by simp
then show ?case by blast
next
case (5 c e)
from 5 have nb: "numbound0 e" by simp
from 5 have cp: "real_of_int c > 0" by simp
fix a
let ?e="Inum (a#bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
with xz have "?P ?z x (Lt (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (Lt (CN 0 c e))" by simp
then show ?case by blast
next
case (6 c e)
from 6 have nb: "numbound0 e" by simp
from lp 6 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
with xz have "?P ?z x (Le (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (Le (CN 0 c e))" by simp
then show ?case by blast
next
case (7 c e)
from 7 have nb: "numbound0 e" by simp
from 7 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
with xz have "?P ?z x (Gt (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (Gt (CN 0 c e))" by simp
then show ?case by blast
next
case (8 c e)
from 8 have nb: "numbound0 e" by simp
from 8 have cp: "real_of_int c > 0" by simp
fix a
let ?e="Inum (a#bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x < ?z"
then have "(real_of_int c * x < - ?e)"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="- ?e"] ac_simps)
then have "real_of_int c * x + ?e < 0" by arith
with xz have "?P ?z x (Ge (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x < ?z. ?P ?z x (Ge (CN 0 c e))" by simp
then show ?case by blast
qed simp_all
lemma rplusinf_inf:
assumes lp: "isrlfm p"
shows "\<exists>z. \<forall>x > z. Ifm (x#bs) (plusinf p) = Ifm (x#bs) p" (is "\<exists>z. \<forall>x. ?P z x p")
using lp
proof (induct p rule: isrlfm.induct)
case (1 p q)
then show ?case
apply auto
apply (rule_tac x= "max z za" in exI)
apply auto
done
next
case (2 p q)
then show ?case
apply auto
apply (rule_tac x= "max z za" in exI)
apply auto
done
next
case (3 c e)
from 3 have nb: "numbound0 e" by simp
from 3 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
then have "real_of_int c * x + ?e \<noteq> 0" by simp
with xz have "?P ?z x (Eq (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (Eq (CN 0 c e))" by simp
then show ?case by blast
next
case (4 c e)
from 4 have nb: "numbound0 e" by simp
from 4 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
then have "real_of_int c * x + ?e \<noteq> 0" by simp
with xz have "?P ?z x (NEq (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (NEq (CN 0 c e))" by simp
then show ?case by blast
next
case (5 c e)
from 5 have nb: "numbound0 e" by simp
from 5 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
with xz have "?P ?z x (Lt (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (Lt (CN 0 c e))" by simp
then show ?case by blast
next
case (6 c e)
from 6 have nb: "numbound0 e" by simp
from 6 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
with xz have "?P ?z x (Le (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (Le (CN 0 c e))" by simp
then show ?case by blast
next
case (7 c e)
from 7 have nb: "numbound0 e" by simp
from 7 have cp: "real_of_int c > 0" by simp
fix a
let ?e = "Inum (a # bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
with xz have "?P ?z x (Gt (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (Gt (CN 0 c e))" by simp
then show ?case by blast
next
case (8 c e)
from 8 have nb: "numbound0 e" by simp
from 8 have cp: "real_of_int c > 0" by simp
fix a
let ?e="Inum (a#bs) e"
let ?z = "(- ?e) / real_of_int c"
{
fix x
assume xz: "x > ?z"
with mult_strict_right_mono [OF xz cp] cp
have "(real_of_int c * x > - ?e)" by (simp add: ac_simps)
then have "real_of_int c * x + ?e > 0" by arith
with xz have "?P ?z x (Ge (CN 0 c e))"
using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp
}
then have "\<forall>x > ?z. ?P ?z x (Ge (CN 0 c e))" by simp
then show ?case by blast
qed simp_all
lemma rminusinf_bound0:
assumes lp: "isrlfm p"
shows "bound0 (minusinf p)"
using lp by (induct p rule: minusinf.induct) simp_all
lemma rplusinf_bound0:
assumes lp: "isrlfm p"
shows "bound0 (plusinf p)"
using lp by (induct p rule: plusinf.induct) simp_all
lemma rminusinf_ex:
assumes lp: "isrlfm p"
and ex: "Ifm (a#bs) (minusinf p)"
shows "\<exists>x. Ifm (x#bs) p"
proof -
from bound0_I [OF rminusinf_bound0[OF lp], where b="a" and bs ="bs"] ex
have th: "\<forall>x. Ifm (x#bs) (minusinf p)" by auto
from rminusinf_inf[OF lp, where bs="bs"]
obtain z where z_def: "\<forall>x<z. Ifm (x # bs) (minusinf p) = Ifm (x # bs) p" by blast
from th have "Ifm ((z - 1) # bs) (minusinf p)" by simp
moreover have "z - 1 < z" by simp
ultimately show ?thesis using z_def by auto
qed
lemma rplusinf_ex:
assumes lp: "isrlfm p"
and ex: "Ifm (a # bs) (plusinf p)"
shows "\<exists>x. Ifm (x # bs) p"
proof -
from bound0_I [OF rplusinf_bound0[OF lp], where b="a" and bs ="bs"] ex
have th: "\<forall>x. Ifm (x # bs) (plusinf p)" by auto
from rplusinf_inf[OF lp, where bs="bs"]
obtain z where z_def: "\<forall>x>z. Ifm (x # bs) (plusinf p) = Ifm (x # bs) p" by blast
from th have "Ifm ((z + 1) # bs) (plusinf p)" by simp
moreover have "z + 1 > z" by simp
ultimately show ?thesis using z_def by auto
qed
fun uset :: "fm \<Rightarrow> (num \<times> int) list"
where
"uset (And p q) = (uset p @ uset q)"
| "uset (Or p q) = (uset p @ uset q)"
| "uset (Eq (CN 0 c e)) = [(Neg e,c)]"
| "uset (NEq (CN 0 c e)) = [(Neg e,c)]"
| "uset (Lt (CN 0 c e)) = [(Neg e,c)]"
| "uset (Le (CN 0 c e)) = [(Neg e,c)]"
| "uset (Gt (CN 0 c e)) = [(Neg e,c)]"
| "uset (Ge (CN 0 c e)) = [(Neg e,c)]"
| "uset p = []"
fun usubst :: "fm \<Rightarrow> num \<times> int \<Rightarrow> fm"
where
"usubst (And p q) = (\<lambda>(t,n). And (usubst p (t,n)) (usubst q (t,n)))"
| "usubst (Or p q) = (\<lambda>(t,n). Or (usubst p (t,n)) (usubst q (t,n)))"
| "usubst (Eq (CN 0 c e)) = (\<lambda>(t,n). Eq (Add (Mul c t) (Mul n e)))"
| "usubst (NEq (CN 0 c e)) = (\<lambda>(t,n). NEq (Add (Mul c t) (Mul n e)))"
| "usubst (Lt (CN 0 c e)) = (\<lambda>(t,n). Lt (Add (Mul c t) (Mul n e)))"
| "usubst (Le (CN 0 c e)) = (\<lambda>(t,n). Le (Add (Mul c t) (Mul n e)))"
| "usubst (Gt (CN 0 c e)) = (\<lambda>(t,n). Gt (Add (Mul c t) (Mul n e)))"
| "usubst (Ge (CN 0 c e)) = (\<lambda>(t,n). Ge (Add (Mul c t) (Mul n e)))"
| "usubst p = (\<lambda>(t, n). p)"
lemma usubst_I:
assumes lp: "isrlfm p"
and np: "real_of_int n > 0"
and nbt: "numbound0 t"
shows "(Ifm (x # bs) (usubst p (t,n)) =
Ifm (((Inum (x # bs) t) / (real_of_int n)) # bs) p) \<and> bound0 (usubst p (t, n))"
(is "(?I x (usubst p (t, n)) = ?I ?u p) \<and> ?B p"
is "(_ = ?I (?t/?n) p) \<and> _"
is "(_ = ?I (?N x t /_) p) \<and> _")
using lp
proof (induct p rule: usubst.induct)
case (5 c e)
with assms have cp: "c > 0" and nb: "numbound0 e" by simp_all
have "?I ?u (Lt (CN 0 c e)) \<longleftrightarrow> real_of_int c * (?t / ?n) + ?N x e < 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> \<longleftrightarrow> ?n * (real_of_int c * (?t / ?n)) + ?n*(?N x e) < 0"
by (simp only: pos_less_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> \<longleftrightarrow> real_of_int c * ?t + ?n * (?N x e) < 0" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
next
case (6 c e)
with assms have cp: "c > 0" and nb: "numbound0 e" by simp_all
have "?I ?u (Le (CN 0 c e)) \<longleftrightarrow> real_of_int c * (?t / ?n) + ?N x e \<le> 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> = (?n*(real_of_int c *(?t/?n)) + ?n*(?N x e) \<le> 0)"
by (simp only: pos_le_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> = (real_of_int c *?t + ?n* (?N x e) \<le> 0)" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
next
case (7 c e)
with assms have cp: "c >0" and nb: "numbound0 e" by simp_all
have "?I ?u (Gt (CN 0 c e)) \<longleftrightarrow> real_of_int c *(?t / ?n) + ?N x e > 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> \<longleftrightarrow> ?n * (real_of_int c * (?t / ?n)) + ?n * ?N x e > 0"
by (simp only: pos_divide_less_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> \<longleftrightarrow> real_of_int c * ?t + ?n * ?N x e > 0" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
next
case (8 c e)
with assms have cp: "c > 0" and nb: "numbound0 e" by simp_all
have "?I ?u (Ge (CN 0 c e)) \<longleftrightarrow> real_of_int c * (?t / ?n) + ?N x e \<ge> 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> \<longleftrightarrow> ?n * (real_of_int c * (?t / ?n)) + ?n * ?N x e \<ge> 0"
by (simp only: pos_divide_le_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> \<longleftrightarrow> real_of_int c * ?t + ?n * ?N x e \<ge> 0" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
next
case (3 c e)
with assms have cp: "c > 0" and nb: "numbound0 e" by simp_all
from np have np: "real_of_int n \<noteq> 0" by simp
have "?I ?u (Eq (CN 0 c e)) \<longleftrightarrow> real_of_int c * (?t / ?n) + ?N x e = 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> \<longleftrightarrow> ?n * (real_of_int c * (?t / ?n)) + ?n * ?N x e = 0"
by (simp only: nonzero_eq_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> \<longleftrightarrow> real_of_int c * ?t + ?n * ?N x e = 0" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
next
case (4 c e) with assms have cp: "c >0" and nb: "numbound0 e" by simp_all
from np have np: "real_of_int n \<noteq> 0" by simp
have "?I ?u (NEq (CN 0 c e)) \<longleftrightarrow> real_of_int c * (?t / ?n) + ?N x e \<noteq> 0"
using numbound0_I[OF nb, where bs="bs" and b="?u" and b'="x"] by simp
also have "\<dots> \<longleftrightarrow> ?n * (real_of_int c * (?t / ?n)) + ?n * ?N x e \<noteq> 0"
by (simp only: nonzero_eq_divide_eq[OF np, where a="real_of_int c *(?t/?n) + (?N x e)"
and b="0", simplified div_0]) (simp only: algebra_simps)
also have "\<dots> \<longleftrightarrow> real_of_int c * ?t + ?n * ?N x e \<noteq> 0" using np by simp
finally show ?case using nbt nb by (simp add: algebra_simps)
qed(simp_all add: nbt numbound0_I[where bs ="bs" and b="(Inum (x#bs) t)/ real_of_int n" and b'="x"])
lemma uset_l:
assumes lp: "isrlfm p"
shows "\<forall>(t,k) \<in> set (uset p). numbound0 t \<and> k > 0"
using lp by (induct p rule: uset.induct) auto
lemma rminusinf_uset:
assumes lp: "isrlfm p"
and nmi: "\<not> (Ifm (a # bs) (minusinf p))" (is "\<not> (Ifm (a # bs) (?M p))")
and ex: "Ifm (x#bs) p" (is "?I x p")
shows "\<exists>(s,m) \<in> set (uset p). x \<ge> Inum (a#bs) s / real_of_int m"
(is "\<exists>(s,m) \<in> ?U p. x \<ge> ?N a s / real_of_int m")
proof -
have "\<exists>(s,m) \<in> set (uset p). real_of_int m * x \<ge> Inum (a#bs) s"
(is "\<exists>(s,m) \<in> ?U p. real_of_int m *x \<ge> ?N a s")
using lp nmi ex
by (induct p rule: minusinf.induct) (auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"])
then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real_of_int m * x \<ge> ?N a s"
by blast
from uset_l[OF lp] smU have mp: "real_of_int m > 0"
by auto
from pos_divide_le_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<ge> ?N a s / real_of_int m"
by (auto simp add: mult.commute)
then show ?thesis
using smU by auto
qed
lemma rplusinf_uset:
assumes lp: "isrlfm p"
and nmi: "\<not> (Ifm (a # bs) (plusinf p))" (is "\<not> (Ifm (a # bs) (?M p))")
and ex: "Ifm (x # bs) p" (is "?I x p")
shows "\<exists>(s,m) \<in> set (uset p). x \<le> Inum (a#bs) s / real_of_int m"
(is "\<exists>(s,m) \<in> ?U p. x \<le> ?N a s / real_of_int m")
proof -
have "\<exists>(s,m) \<in> set (uset p). real_of_int m * x \<le> Inum (a#bs) s"
(is "\<exists>(s,m) \<in> ?U p. real_of_int m *x \<le> ?N a s")
using lp nmi ex
by (induct p rule: minusinf.induct)
(auto simp add:numbound0_I[where bs="bs" and b="a" and b'="x"])
then obtain s m where smU: "(s,m) \<in> set (uset p)" and mx: "real_of_int m * x \<le> ?N a s"
by blast
from uset_l[OF lp] smU have mp: "real_of_int m > 0"
by auto
from pos_le_divide_eq[OF mp, where a="x" and b="?N a s", symmetric] mx have "x \<le> ?N a s / real_of_int m"
by (auto simp add: mult.commute)
then show ?thesis
using smU by auto
qed
lemma lin_dense:
assumes lp: "isrlfm p"
and noS: "\<forall>t. l < t \<and> t< u \<longrightarrow> t \<notin> (\<lambda>(t,n). Inum (x#bs) t / real_of_int n) ` set (uset p)"
(is "\<forall>t. _ \<and> _ \<longrightarrow> t \<notin> (\<lambda>(t,n). ?N x t / real_of_int n ) ` (?U p)")
and lx: "l < x"
and xu:"x < u"
and px:" Ifm (x#bs) p"
and ly: "l < y" and yu: "y < u"
shows "Ifm (y#bs) p"
using lp px noS
proof (induct p rule: isrlfm.induct)
case (5 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from 5 have "x * real_of_int c + ?N x e < 0"
by (simp add: algebra_simps)
then have pxc: "x < (- ?N x e) / real_of_int c"
by (simp only: pos_less_divide_eq[OF cp, where a="x" and b="-?N x e"])
from 5 have noSc:"\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c"
by auto
then consider "y < (-?N x e)/ real_of_int c" | "y > (- ?N x e) / real_of_int c"
by atomize_elim auto
then show ?case
proof cases
case 1
then have "y * real_of_int c < - ?N x e"
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real_of_int c * y + ?N x e < 0"
by (simp add: algebra_simps)
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
case 2
with yu have eu: "u > (- ?N x e) / real_of_int c"
by auto
with noSc ly yu have "(- ?N x e) / real_of_int c \<le> l"
by (cases "(- ?N x e) / real_of_int c > l") auto
with lx pxc have False
by auto
then show ?thesis ..
qed
next
case (6 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from 6 have "x * real_of_int c + ?N x e \<le> 0"
by (simp add: algebra_simps)
then have pxc: "x \<le> (- ?N x e) / real_of_int c"
by (simp only: pos_le_divide_eq[OF cp, where a="x" and b="-?N x e"])
from 6 have noSc:"\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c"
by auto
then consider "y < (- ?N x e) / real_of_int c" | "y > (-?N x e) / real_of_int c"
by atomize_elim auto
then show ?case
proof cases
case 1
then have "y * real_of_int c < - ?N x e"
by (simp add: pos_less_divide_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real_of_int c * y + ?N x e < 0"
by (simp add: algebra_simps)
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
case 2
with yu have eu: "u > (- ?N x e) / real_of_int c"
by auto
with noSc ly yu have "(- ?N x e) / real_of_int c \<le> l"
by (cases "(- ?N x e) / real_of_int c > l") auto
with lx pxc have False
by auto
then show ?thesis ..
qed
next
case (7 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from 7 have "x * real_of_int c + ?N x e > 0"
by (simp add: algebra_simps)
then have pxc: "x > (- ?N x e) / real_of_int c"
by (simp only: pos_divide_less_eq[OF cp, where a="x" and b="-?N x e"])
from 7 have noSc: "\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c"
by auto
then consider "y > (- ?N x e) / real_of_int c" | "y < (-?N x e) / real_of_int c"
by atomize_elim auto
then show ?case
proof cases
case 1
then have "y * real_of_int c > - ?N x e"
by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real_of_int c * y + ?N x e > 0"
by (simp add: algebra_simps)
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
case 2
with ly have eu: "l < (- ?N x e) / real_of_int c"
by auto
with noSc ly yu have "(- ?N x e) / real_of_int c \<ge> u"
by (cases "(- ?N x e) / real_of_int c > l") auto
with xu pxc have False by auto
then show ?thesis ..
qed
next
case (8 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from 8 have "x * real_of_int c + ?N x e \<ge> 0"
by (simp add: algebra_simps)
then have pxc: "x \<ge> (- ?N x e) / real_of_int c"
by (simp only: pos_divide_le_eq[OF cp, where a="x" and b="-?N x e"])
from 8 have noSc:"\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c"
by auto
then consider "y > (- ?N x e) / real_of_int c" | "y < (-?N x e) / real_of_int c"
by atomize_elim auto
then show ?case
proof cases
case 1
then have "y * real_of_int c > - ?N x e"
by (simp add: pos_divide_less_eq[OF cp, where a="y" and b="-?N x e", symmetric])
then have "real_of_int c * y + ?N x e > 0" by (simp add: algebra_simps)
then show ?thesis
using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"] by simp
next
case 2
with ly have eu: "l < (- ?N x e) / real_of_int c"
by auto
with noSc ly yu have "(- ?N x e) / real_of_int c \<ge> u"
by (cases "(- ?N x e) / real_of_int c > l") auto
with xu pxc have False
by auto
then show ?thesis ..
qed
next
case (3 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from cp have cnz: "real_of_int c \<noteq> 0"
by simp
from 3 have "x * real_of_int c + ?N x e = 0"
by (simp add: algebra_simps)
then have pxc: "x = (- ?N x e) / real_of_int c"
by (simp only: nonzero_eq_divide_eq[OF cnz, where a="x" and b="-?N x e"])
from 3 have noSc:"\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with lx xu have yne: "x \<noteq> - ?N x e / real_of_int c"
by auto
with pxc show ?case
by simp
next
case (4 c e)
then have cp: "real_of_int c > 0" and nb: "numbound0 e"
by simp_all
from cp have cnz: "real_of_int c \<noteq> 0"
by simp
from 4 have noSc:"\<forall>t. l < t \<and> t < u \<longrightarrow> t \<noteq> (- ?N x e) / real_of_int c"
by auto
with ly yu have yne: "y \<noteq> - ?N x e / real_of_int c"
by auto
then have "y* real_of_int c \<noteq> -?N x e"
by (simp only: nonzero_eq_divide_eq[OF cnz, where a="y" and b="-?N x e"]) simp
then have "y* real_of_int c + ?N x e \<noteq> 0"
by (simp add: algebra_simps)
then show ?case using numbound0_I[OF nb, where bs="bs" and b="x" and b'="y"]
by (simp add: algebra_simps)
qed (auto simp add: numbound0_I[where bs="bs" and b="y" and b'="x"])
lemma finite_set_intervals:
fixes x :: real
assumes px: "P x"
and lx: "l \<le> x"
and xu: "x \<le> u"
and linS: "l\<in> S"
and uinS: "u \<in> S"
and fS: "finite S"
and lS: "\<forall>x\<in> S. l \<le> x"
and Su: "\<forall>x\<in> S. x \<le> u"
shows "\<exists>a \<in> S. \<exists>b \<in> S. (\<forall>y. a < y \<and> y < b \<longrightarrow> y \<notin> S) \<and> a \<le> x \<and> x \<le> b \<and> P x"
proof -
let ?Mx = "{y. y\<in> S \<and> y \<le> x}"
let ?xM = "{y. y\<in> S \<and> x \<le> y}"
let ?a = "Max ?Mx"
let ?b = "Min ?xM"
have MxS: "?Mx \<subseteq> S"
by blast
then have fMx: "finite ?Mx"
using fS finite_subset by auto
from lx linS have linMx: "l \<in> ?Mx"
by blast
then have Mxne: "?Mx \<noteq> {}"
by blast
have xMS: "?xM \<subseteq> S"
by blast
then have fxM: "finite ?xM"
using fS finite_subset by auto
from xu uinS have linxM: "u \<in> ?xM"
by blast
then have xMne: "?xM \<noteq> {}"
by blast
have ax:"?a \<le> x"
using Mxne fMx by auto
have xb:"x \<le> ?b"
using xMne fxM by auto
have "?a \<in> ?Mx"
using Max_in[OF fMx Mxne] by simp
then have ainS: "?a \<in> S"
using MxS by blast
have "?b \<in> ?xM"
using Min_in[OF fxM xMne] by simp
then have binS: "?b \<in> S"
using xMS by blast
have noy: "\<forall>y. ?a < y \<and> y < ?b \<longrightarrow> y \<notin> S"
proof clarsimp
fix y
assume ay: "?a < y" and yb: "y < ?b" and yS: "y \<in> S"
from yS consider "y \<in> ?Mx" | "y \<in> ?xM"
by atomize_elim auto
then show False
proof cases
case 1
then have "y \<le> ?a"
using Mxne fMx by auto
with ay show ?thesis by simp
next
case 2
then have "y \<ge> ?b"
using xMne fxM by auto
with yb show ?thesis by simp
qed
qed
from ainS binS noy ax xb px show ?thesis
by blast
qed
lemma rinf_uset:
assumes lp: "isrlfm p"
and nmi: "\<not> (Ifm (x # bs) (minusinf p))" (is "\<not> (Ifm (x # bs) (?M p))")
and npi: "\<not> (Ifm (x # bs) (plusinf p))" (is "\<not> (Ifm (x # bs) (?P p))")
and ex: "\<exists>x. Ifm (x # bs) p" (is "\<exists>x. ?I x p")
shows "\<exists>(l,n) \<in> set (uset p). \<exists>(s,m) \<in> set (uset p).
?I ((Inum (x#bs) l / real_of_int n + Inum (x#bs) s / real_of_int m) / 2) p"
proof -
let ?N = "\<lambda>x t. Inum (x # bs) t"
let ?U = "set (uset p)"
from ex obtain a where pa: "?I a p"
by blast
from bound0_I[OF rminusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] nmi
have nmi': "\<not> (?I a (?M p))"
by simp
from bound0_I[OF rplusinf_bound0[OF lp], where bs="bs" and b="x" and b'="a"] npi
have npi': "\<not> (?I a (?P p))"
by simp
have "\<exists>(l,n) \<in> set (uset p). \<exists>(s,m) \<in> set (uset p). ?I ((?N a l/real_of_int n + ?N a s /real_of_int m) / 2) p"
proof -
let ?M = "(\<lambda>(t,c). ?N a t / real_of_int c) ` ?U"
have fM: "finite ?M"
by auto
from rminusinf_uset[OF lp nmi pa] rplusinf_uset[OF lp npi pa]
have "\<exists>(l,n) \<in> set (uset p). \<exists>(s,m) \<in> set (uset p). a \<le> ?N x l / real_of_int n \<and> a \<ge> ?N x s / real_of_int m"
by blast
then obtain "t" "n" "s" "m"
where tnU: "(t,n) \<in> ?U"
and smU: "(s,m) \<in> ?U"
and xs1: "a \<le> ?N x s / real_of_int m"
and tx1: "a \<ge> ?N x t / real_of_int n"
by blast
from uset_l[OF lp] tnU smU numbound0_I[where bs="bs" and b="x" and b'="a"] xs1 tx1
have xs: "a \<le> ?N a s / real_of_int m" and tx: "a \<ge> ?N a t / real_of_int n"
by auto
from tnU have Mne: "?M \<noteq> {}"
by auto
then have Une: "?U \<noteq> {}"
by simp
let ?l = "Min ?M"
let ?u = "Max ?M"
have linM: "?l \<in> ?M"
using fM Mne by simp
have uinM: "?u \<in> ?M"
using fM Mne by simp
have tnM: "?N a t / real_of_int n \<in> ?M"
using tnU by auto
have smM: "?N a s / real_of_int m \<in> ?M"
using smU by auto
have lM: "\<forall>t\<in> ?M. ?l \<le> t"
using Mne fM by auto
have Mu: "\<forall>t\<in> ?M. t \<le> ?u"
using Mne fM by auto
have "?l \<le> ?N a t / real_of_int n"
using tnM Mne by simp
then have lx: "?l \<le> a"
using tx by simp
have "?N a s / real_of_int m \<le> ?u"
using smM Mne by simp
then have xu: "a \<le> ?u"
using xs by simp
from finite_set_intervals2[where P="\<lambda>x. ?I x p",OF pa lx xu linM uinM fM lM Mu]
consider u where "u \<in> ?M" "?I u p"
| t1 t2 where "t1 \<in> ?M" "t2 \<in> ?M" "\<forall>y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M" "t1 < a" "a < t2" "?I a p"
by blast
then show ?thesis
proof cases
case 1
note um = \<open>u \<in> ?M\<close> and pu = \<open>?I u p\<close>
then have "\<exists>(tu,nu) \<in> ?U. u = ?N a tu / real_of_int nu"
by auto
then obtain tu nu where tuU: "(tu, nu) \<in> ?U" and tuu: "u= ?N a tu / real_of_int nu"
by blast
have "(u + u) / 2 = u"
by auto
with pu tuu have "?I (((?N a tu / real_of_int nu) + (?N a tu / real_of_int nu)) / 2) p"
by simp
with tuU show ?thesis by blast
next
case 2
note t1M = \<open>t1 \<in> ?M\<close> and t2M = \<open>t2\<in> ?M\<close>
and noM = \<open>\<forall>y. t1 < y \<and> y < t2 \<longrightarrow> y \<notin> ?M\<close>
and t1x = \<open>t1 < a\<close> and xt2 = \<open>a < t2\<close> and px = \<open>?I a p\<close>
from t1M have "\<exists>(t1u,t1n) \<in> ?U. t1 = ?N a t1u / real_of_int t1n"
by auto
then obtain t1u t1n where t1uU: "(t1u, t1n) \<in> ?U" and t1u: "t1 = ?N a t1u / real_of_int t1n"
by blast
from t2M have "\<exists>(t2u,t2n) \<in> ?U. t2 = ?N a t2u / real_of_int t2n"
by auto
then obtain t2u t2n where t2uU: "(t2u, t2n) \<in> ?U" and t2u: "t2 = ?N a t2u / real_of_int t2n"
by blast
from t1x xt2 have t1t2: "t1 < t2"
by simp
let ?u = "(t1 + t2) / 2"
from less_half_sum[OF t1t2] gt_half_sum[OF t1t2] have t1lu: "t1 < ?u" and ut2: "?u < t2"
by auto
from lin_dense[OF lp noM t1x xt2 px t1lu ut2] have "?I ?u p" .
with t1uU t2uU t1u t2u show ?thesis
by blast
qed
qed
then obtain l n s m where lnU: "(l, n) \<in> ?U" and smU:"(s, m) \<in> ?U"
and pu: "?I ((?N a l / real_of_int n + ?N a s / real_of_int m) / 2) p"
by blast
from lnU smU uset_l[OF lp] have nbl: "numbound0 l" and nbs: "numbound0 s"
by auto
from numbound0_I[OF nbl, where bs="bs" and b="a" and b'="x"]
numbound0_I[OF nbs, where bs="bs" and b="a" and b'="x"] pu
have "?I ((?N x l / real_of_int n + ?N x s / real_of_int m) / 2) p"
by simp
with lnU smU show ?thesis
by auto
qed
(* The Ferrante - Rackoff Theorem *)
theorem fr_eq:
assumes lp: "isrlfm p"
shows "(\<exists>x. Ifm (x#bs) p) \<longleftrightarrow>
Ifm (x # bs) (minusinf p) \<or> Ifm (x # bs) (plusinf p) \<or>
(\<exists>(t,n) \<in> set (uset p). \<exists>(s,m) \<in> set (uset p).
Ifm ((((Inum (x # bs) t) / real_of_int n + (Inum (x # bs) s) / real_of_int m) / 2) # bs) p)"
(is "(\<exists>x. ?I x p) \<longleftrightarrow> (?M \<or> ?P \<or> ?F)" is "?E = ?D")
proof
assume px: "\<exists>x. ?I x p"
consider "?M \<or> ?P" | "\<not> ?M" "\<not> ?P" by blast
then show ?D
proof cases
case 1
then show ?thesis by blast
next
case 2
from rinf_uset[OF lp this] have ?F
using px by blast
then show ?thesis by blast
qed
next
assume ?D
then consider ?M | ?P | ?F by blast
then show ?E
proof cases
case 1
from rminusinf_ex[OF lp this] show ?thesis .
next
case 2
from rplusinf_ex[OF lp this] show ?thesis .
next
case 3
then show ?thesis by blast
qed
qed
lemma fr_equsubst:
assumes lp: "isrlfm p"
shows "(\<exists>x. Ifm (x # bs) p) \<longleftrightarrow>
(Ifm (x # bs) (minusinf p) \<or> Ifm (x # bs) (plusinf p) \<or>
(\<exists>(t,k) \<in> set (uset p). \<exists>(s,l) \<in> set (uset p).
Ifm (x#bs) (usubst p (Add (Mul l t) (Mul k s), 2 * k * l))))"
(is "(\<exists>x. ?I x p) \<longleftrightarrow> ?M \<or> ?P \<or> ?F" is "?E = ?D")
proof
assume px: "\<exists>x. ?I x p"
consider "?M \<or> ?P" | "\<not> ?M" "\<not> ?P" by blast
then show ?D
proof cases
case 1
then show ?thesis by blast
next
case 2
let ?f = "\<lambda>(t,n). Inum (x # bs) t / real_of_int n"
let ?N = "\<lambda>t. Inum (x # bs) t"
{
fix t n s m
assume "(t, n) \<in> set (uset p)" and "(s, m) \<in> set (uset p)"
with uset_l[OF lp] have tnb: "numbound0 t"
and np: "real_of_int n > 0" and snb: "numbound0 s" and mp: "real_of_int m > 0"
by auto
let ?st = "Add (Mul m t) (Mul n s)"
from np mp have mnp: "real_of_int (2 * n * m) > 0"
by (simp add: mult.commute)
from tnb snb have st_nb: "numbound0 ?st"
by simp
have st: "(?N t / real_of_int n + ?N s / real_of_int m) / 2 = ?N ?st / real_of_int (2 * n * m)"
using mnp mp np by (simp add: algebra_simps add_divide_distrib)
from usubst_I[OF lp mnp st_nb, where x="x" and bs="bs"]
have "?I x (usubst p (?st, 2 * n * m)) = ?I ((?N t / real_of_int n + ?N s / real_of_int m) / 2) p"
by (simp only: st[symmetric])
}
with rinf_uset[OF lp 2 px] have ?F
by blast
then show ?thesis
by blast
qed
next
assume ?D
then consider ?M | ?P | t k s l where "(t, k) \<in> set (uset p)" "(s, l) \<in> set (uset p)"
"?I x (usubst p (Add (Mul l t) (Mul k s), 2 * k * l))"
by blast
then show ?E
proof cases
case 1
from rminusinf_ex[OF lp this] show ?thesis .
next
case 2
from rplusinf_ex[OF lp this] show ?thesis .
next
case 3
with uset_l[OF lp] have tnb: "numbound0 t" and np: "real_of_int k > 0"
and snb: "numbound0 s" and mp: "real_of_int l > 0"
by auto
let ?st = "Add (Mul l t) (Mul k s)"
from np mp have mnp: "real_of_int (2 * k * l) > 0"
by (simp add: mult.commute)
from tnb snb have st_nb: "numbound0 ?st"
by simp
from usubst_I[OF lp mnp st_nb, where bs="bs"]
\<open>?I x (usubst p (Add (Mul l t) (Mul k s), 2 * k * l))\<close> show ?thesis
by auto
qed
qed
(* Implement the right hand side of Ferrante and Rackoff's Theorem. *)
definition ferrack :: "fm \<Rightarrow> fm"
where
"ferrack p =
(let
p' = rlfm (simpfm p);
mp = minusinf p';
pp = plusinf p'
in
if mp = T \<or> pp = T then T
else
(let U = remdups (map simp_num_pair
(map (\<lambda>((t,n),(s,m)). (Add (Mul m t) (Mul n s) , 2 * n * m))
(alluopairs (uset p'))))
in decr (disj mp (disj pp (evaldjf (simpfm \<circ> usubst p') U)))))"
lemma uset_cong_aux:
assumes Ul: "\<forall>(t,n) \<in> set U. numbound0 t \<and> n > 0"
shows "((\<lambda>(t,n). Inum (x # bs) t / real_of_int n) `
(set (map (\<lambda>((t,n),(s,m)). (Add (Mul m t) (Mul n s), 2 * n * m)) (alluopairs U)))) =
((\<lambda>((t,n),(s,m)). (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2) ` (set U \<times> set U))"
(is "?lhs = ?rhs")
proof auto
fix t n s m
assume "((t, n), (s, m)) \<in> set (alluopairs U)"
then have th: "((t, n), (s, m)) \<in> set U \<times> set U"
using alluopairs_set1[where xs="U"] by blast
let ?N = "\<lambda>t. Inum (x # bs) t"
let ?st = "Add (Mul m t) (Mul n s)"
from Ul th have mnz: "m \<noteq> 0"
by auto
from Ul th have nnz: "n \<noteq> 0"
by auto
have st: "(?N t / real_of_int n + ?N s / real_of_int m) / 2 = ?N ?st / real_of_int (2 * n * m)"
using mnz nnz by (simp add: algebra_simps add_divide_distrib)
then show "(real_of_int m * Inum (x # bs) t + real_of_int n * Inum (x # bs) s) / (2 * real_of_int n * real_of_int m)
\<in> (\<lambda>((t, n), s, m). (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2) `
(set U \<times> set U)"
using mnz nnz th
apply (auto simp add: th add_divide_distrib algebra_simps split_def image_def)
apply (rule_tac x="(s,m)" in bexI)
apply simp_all
apply (rule_tac x="(t,n)" in bexI)
apply (simp_all add: mult.commute)
done
next
fix t n s m
assume tnU: "(t, n) \<in> set U" and smU: "(s, m) \<in> set U"
let ?N = "\<lambda>t. Inum (x # bs) t"
let ?st = "Add (Mul m t) (Mul n s)"
from Ul smU have mnz: "m \<noteq> 0"
by auto
from Ul tnU have nnz: "n \<noteq> 0"
by auto
have st: "(?N t / real_of_int n + ?N s / real_of_int m) / 2 = ?N ?st / real_of_int (2 * n * m)"
using mnz nnz by (simp add: algebra_simps add_divide_distrib)
let ?P = "\<lambda>(t',n') (s',m'). (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m)/2 =
(Inum (x # bs) t' / real_of_int n' + Inum (x # bs) s' / real_of_int m') / 2"
have Pc:"\<forall>a b. ?P a b = ?P b a"
by auto
from Ul alluopairs_set1 have Up:"\<forall>((t,n),(s,m)) \<in> set (alluopairs U). n \<noteq> 0 \<and> m \<noteq> 0"
by blast
from alluopairs_ex[OF Pc, where xs="U"] tnU smU
have th':"\<exists>((t',n'),(s',m')) \<in> set (alluopairs U). ?P (t',n') (s',m')"
by blast
then obtain t' n' s' m' where ts'_U: "((t',n'),(s',m')) \<in> set (alluopairs U)"
and Pts': "?P (t', n') (s', m')"
by blast
from ts'_U Up have mnz': "m' \<noteq> 0" and nnz': "n'\<noteq> 0"
by auto
let ?st' = "Add (Mul m' t') (Mul n' s')"
have st': "(?N t' / real_of_int n' + ?N s' / real_of_int m') / 2 = ?N ?st' / real_of_int (2 * n' * m')"
using mnz' nnz' by (simp add: algebra_simps add_divide_distrib)
from Pts' have "(Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2 =
(Inum (x # bs) t' / real_of_int n' + Inum (x # bs) s' / real_of_int m') / 2"
by simp
also have "\<dots> = (\<lambda>(t, n). Inum (x # bs) t / real_of_int n)
((\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ((t', n'), (s', m')))"
by (simp add: st')
finally show "(Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2
\<in> (\<lambda>(t, n). Inum (x # bs) t / real_of_int n) `
(\<lambda>((t, n), s, m). (Add (Mul m t) (Mul n s), 2 * n * m)) ` set (alluopairs U)"
using ts'_U by blast
qed
lemma uset_cong:
assumes lp: "isrlfm p"
and UU': "((\<lambda>(t,n). Inum (x # bs) t / real_of_int n) ` U') =
((\<lambda>((t,n),(s,m)). (Inum (x # bs) t / real_of_int n + Inum (x # bs) s / real_of_int m) / 2) ` (U \<times> U))"
(is "?f ` U' = ?g ` (U \<times> U)")
and U: "\<forall>(t,n) \<in> U. numbound0 t \<and> n > 0"
and U': "\<forall>(t,n) \<in> U'. numbound0 t \<and> n > 0"
shows "(\<exists>(t,n) \<in> U. \<exists>(s,m) \<in> U. Ifm (x # bs) (usubst p (Add (Mul m t) (Mul n s), 2 * n * m))) =
(\<exists>(t,n) \<in> U'. Ifm (x # bs) (usubst p (t, n)))"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
show ?rhs if ?lhs
proof -
from that obtain t n s m where tnU: "(t, n) \<in> U" and smU: "(s, m) \<in> U"
and Pst: "Ifm (x # bs) (usubst p (Add (Mul m t) (Mul n s), 2 * n * m))"
by blast
let ?N = "\<lambda>t. Inum (x#bs) t"
from tnU smU U have tnb: "numbound0 t" and np: "n > 0"
and snb: "numbound0 s" and mp: "m > 0"
by auto
let ?st = "Add (Mul m t) (Mul n s)"
from np mp have mnp: "real_of_int (2 * n * m) > 0"
by (simp add: mult.commute of_int_mult[symmetric] del: of_int_mult)
from tnb snb have stnb: "numbound0 ?st"
by simp
have st: "(?N t / real_of_int n + ?N s / real_of_int m) / 2 = ?N ?st / real_of_int (2 * n * m)"
using mp np by (simp add: algebra_simps add_divide_distrib)
from tnU smU UU' have "?g ((t, n), (s, m)) \<in> ?f ` U'"
by blast
then have "\<exists>(t',n') \<in> U'. ?g ((t, n), (s, m)) = ?f (t', n')"
apply auto
apply (rule_tac x="(a, b)" in bexI)
apply auto
done
then obtain t' n' where tnU': "(t',n') \<in> U'" and th: "?g ((t, n), (s, m)) = ?f (t', n')"
by blast
from U' tnU' have tnb': "numbound0 t'" and np': "real_of_int n' > 0"
by auto
from usubst_I[OF lp mnp stnb, where bs="bs" and x="x"] Pst
have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real_of_int (2 * n * m) # bs) p"
by simp
from conjunct1[OF usubst_I[OF lp np' tnb', where bs="bs" and x="x"], symmetric]
th[simplified split_def fst_conv snd_conv,symmetric] Pst2[simplified st[symmetric]]
have "Ifm (x # bs) (usubst p (t', n'))"
by (simp only: st)
then show ?thesis
using tnU' by auto
qed
show ?lhs if ?rhs
proof -
from that obtain t' n' where tnU': "(t', n') \<in> U'" and Pt': "Ifm (x # bs) (usubst p (t', n'))"
by blast
from tnU' UU' have "?f (t', n') \<in> ?g ` (U \<times> U)"
by blast
then have "\<exists>((t,n),(s,m)) \<in> U \<times> U. ?f (t', n') = ?g ((t, n), (s, m))"
apply auto
apply (rule_tac x="(a,b)" in bexI)
apply auto
done
then obtain t n s m where tnU: "(t, n) \<in> U" and smU: "(s, m) \<in> U" and
th: "?f (t', n') = ?g ((t, n), (s, m))"
by blast
let ?N = "\<lambda>t. Inum (x # bs) t"
from tnU smU U have tnb: "numbound0 t" and np: "n > 0"
and snb: "numbound0 s" and mp: "m > 0"
by auto
let ?st = "Add (Mul m t) (Mul n s)"
from np mp have mnp: "real_of_int (2 * n * m) > 0"
by (simp add: mult.commute of_int_mult[symmetric] del: of_int_mult)
from tnb snb have stnb: "numbound0 ?st"
by simp
have st: "(?N t / real_of_int n + ?N s / real_of_int m) / 2 = ?N ?st / real_of_int (2 * n * m)"
using mp np by (simp add: algebra_simps add_divide_distrib)
from U' tnU' have tnb': "numbound0 t'" and np': "real_of_int n' > 0"
by auto
from usubst_I[OF lp np' tnb', where bs="bs" and x="x",simplified
th[simplified split_def fst_conv snd_conv] st] Pt'
have Pst2: "Ifm (Inum (x # bs) (Add (Mul m t) (Mul n s)) / real_of_int (2 * n * m) # bs) p"
by simp
with usubst_I[OF lp mnp stnb, where x="x" and bs="bs"] tnU smU
show ?thesis by blast
qed
qed
lemma ferrack:
assumes qf: "qfree p"
shows "qfree (ferrack p) \<and> (Ifm bs (ferrack p) \<longleftrightarrow> (\<exists>x. Ifm (x # bs) p))"
(is "_ \<and> (?rhs \<longleftrightarrow> ?lhs)")
proof -
let ?I = "\<lambda>x p. Ifm (x # bs) p"
fix x
let ?N = "\<lambda>t. Inum (x # bs) t"
let ?q = "rlfm (simpfm p)"
let ?U = "uset ?q"
let ?Up = "alluopairs ?U"
let ?g = "\<lambda>((t,n),(s,m)). (Add (Mul m t) (Mul n s), 2 * n * m)"
let ?S = "map ?g ?Up"
let ?SS = "map simp_num_pair ?S"
let ?Y = "remdups ?SS"
let ?f = "\<lambda>(t,n). ?N t / real_of_int n"
let ?h = "\<lambda>((t,n),(s,m)). (?N t / real_of_int n + ?N s / real_of_int m) / 2"
let ?F = "\<lambda>p. \<exists>a \<in> set (uset p). \<exists>b \<in> set (uset p). ?I x (usubst p (?g (a, b)))"
let ?ep = "evaldjf (simpfm \<circ> (usubst ?q)) ?Y"
from rlfm_I[OF simpfm_qf[OF qf]] have lq: "isrlfm ?q"
by blast
from alluopairs_set1[where xs="?U"] have UpU: "set ?Up \<subseteq> set ?U \<times> set ?U"
by simp
from uset_l[OF lq] have U_l: "\<forall>(t,n) \<in> set ?U. numbound0 t \<and> n > 0" .
from U_l UpU
have "\<forall>((t,n),(s,m)) \<in> set ?Up. numbound0 t \<and> n> 0 \<and> numbound0 s \<and> m > 0"
by auto
then have Snb: "\<forall>(t,n) \<in> set ?S. numbound0 t \<and> n > 0 "
by auto
have Y_l: "\<forall>(t,n) \<in> set ?Y. numbound0 t \<and> n > 0"
proof -
have "numbound0 t \<and> n > 0" if tnY: "(t, n) \<in> set ?Y" for t n
proof -
from that have "(t,n) \<in> set ?SS"
by simp
then have "\<exists>(t',n') \<in> set ?S. simp_num_pair (t', n') = (t, n)"
apply (auto simp add: split_def simp del: map_map)
apply (rule_tac x="((aa,ba),(ab,bb))" in bexI)
apply simp_all
done
then obtain t' n' where tn'S: "(t', n') \<in> set ?S" and tns: "simp_num_pair (t', n') = (t, n)"
by blast
from tn'S Snb have tnb: "numbound0 t'" and np: "n' > 0"
by auto
from simp_num_pair_l[OF tnb np tns] show ?thesis .
qed
then show ?thesis by blast
qed
have YU: "(?f ` set ?Y) = (?h ` (set ?U \<times> set ?U))"
proof -
from simp_num_pair_ci[where bs="x#bs"] have "\<forall>x. (?f \<circ> simp_num_pair) x = ?f x"
by auto
then have th: "?f \<circ> simp_num_pair = ?f"
by auto
have "(?f ` set ?Y) = ((?f \<circ> simp_num_pair) ` set ?S)"
by (simp add: comp_assoc image_comp)
also have "\<dots> = ?f ` set ?S"
by (simp add: th)
also have "\<dots> = (?f \<circ> ?g) ` set ?Up"
by (simp only: set_map o_def image_comp)
also have "\<dots> = ?h ` (set ?U \<times> set ?U)"
using uset_cong_aux[OF U_l, where x="x" and bs="bs", simplified set_map image_comp]
by blast
finally show ?thesis .
qed
have "\<forall>(t,n) \<in> set ?Y. bound0 (simpfm (usubst ?q (t, n)))"
proof -
have "bound0 (simpfm (usubst ?q (t, n)))" if tnY: "(t,n) \<in> set ?Y" for t n
proof -
from Y_l that have tnb: "numbound0 t" and np: "real_of_int n > 0"
by auto
from usubst_I[OF lq np tnb] have "bound0 (usubst ?q (t, n))"
by simp
then show ?thesis
using simpfm_bound0 by simp
qed
then show ?thesis by blast
qed
then have ep_nb: "bound0 ?ep"
using evaldjf_bound0[where xs="?Y" and f="simpfm \<circ> (usubst ?q)"] by auto
let ?mp = "minusinf ?q"
let ?pp = "plusinf ?q"
let ?M = "?I x ?mp"
let ?P = "?I x ?pp"
let ?res = "disj ?mp (disj ?pp ?ep)"
from rminusinf_bound0[OF lq] rplusinf_bound0[OF lq] ep_nb have nbth: "bound0 ?res"
by auto
from conjunct1[OF rlfm_I[OF simpfm_qf[OF qf]]] simpfm have th: "?lhs = (\<exists>x. ?I x ?q)"
by auto
from th fr_equsubst[OF lq, where bs="bs" and x="x"] have lhfr: "?lhs = (?M \<or> ?P \<or> ?F ?q)"
by (simp only: split_def fst_conv snd_conv)
also have "\<dots> = (?M \<or> ?P \<or> (\<exists>(t,n) \<in> set ?Y. ?I x (simpfm (usubst ?q (t,n)))))"
using uset_cong[OF lq YU U_l Y_l] by (simp only: split_def fst_conv snd_conv simpfm)
also have "\<dots> = (Ifm (x#bs) ?res)"
using evaldjf_ex[where ps="?Y" and bs = "x#bs" and f="simpfm \<circ> (usubst ?q)",symmetric]
by (simp add: split_def prod.collapse)
finally have lheq: "?lhs = Ifm bs (decr ?res)"
using decr[OF nbth] by blast
then have lr: "?lhs = ?rhs"
unfolding ferrack_def Let_def
by (cases "?mp = T \<or> ?pp = T", auto) (simp add: disj_def)+
from decr_qf[OF nbth] have "qfree (ferrack p)"
by (auto simp add: Let_def ferrack_def)
with lr show ?thesis
by blast
qed
definition linrqe:: "fm \<Rightarrow> fm"
where "linrqe p = qelim (prep p) ferrack"
theorem linrqe: "Ifm bs (linrqe p) = Ifm bs p \<and> qfree (linrqe p)"
using ferrack qelim_ci prep
unfolding linrqe_def by auto
definition ferrack_test :: "unit \<Rightarrow> fm"
where
"ferrack_test u =
linrqe (A (A (Imp (Lt (Sub (Bound 1) (Bound 0)))
(E (Eq (Sub (Add (Bound 0) (Bound 2)) (Bound 1)))))))"
ML_val \<open>@{code ferrack_test} ()\<close>
oracle linr_oracle = \<open>
let
val mk_C = @{code C} o @{code int_of_integer};
val mk_Bound = @{code Bound} o @{code nat_of_integer};
fun num_of_term vs (Free vT) = mk_Bound (find_index (fn vT' => vT = vT') vs)
| num_of_term vs \<^term>\<open>real_of_int (0::int)\<close> = mk_C 0
| num_of_term vs \<^term>\<open>real_of_int (1::int)\<close> = mk_C 1
| num_of_term vs \<^term>\<open>0::real\<close> = mk_C 0
| num_of_term vs \<^term>\<open>1::real\<close> = mk_C 1
| num_of_term vs (Bound i) = mk_Bound i
| num_of_term vs (\<^term>\<open>uminus :: real \<Rightarrow> real\<close> $ t') = @{code Neg} (num_of_term vs t')
| num_of_term vs (\<^term>\<open>(+) :: real \<Rightarrow> real \<Rightarrow> real\<close> $ t1 $ t2) =
@{code Add} (num_of_term vs t1, num_of_term vs t2)
| num_of_term vs (\<^term>\<open>(-) :: real \<Rightarrow> real \<Rightarrow> real\<close> $ t1 $ t2) =
@{code Sub} (num_of_term vs t1, num_of_term vs t2)
| num_of_term vs (\<^term>\<open>(*) :: real \<Rightarrow> real \<Rightarrow> real\<close> $ t1 $ t2) = (case num_of_term vs t1
of @{code C} i => @{code Mul} (i, num_of_term vs t2)
| _ => error "num_of_term: unsupported multiplication")
| num_of_term vs (\<^term>\<open>real_of_int :: int \<Rightarrow> real\<close> $ t') =
(mk_C (snd (HOLogic.dest_number t'))
handle TERM _ => error ("num_of_term: unknown term"))
| num_of_term vs t' =
(mk_C (snd (HOLogic.dest_number t'))
handle TERM _ => error ("num_of_term: unknown term"));
fun fm_of_term vs \<^term>\<open>True\<close> = @{code T}
| fm_of_term vs \<^term>\<open>False\<close> = @{code F}
| fm_of_term vs (\<^term>\<open>(<) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $ t1 $ t2) =
@{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
| fm_of_term vs (\<^term>\<open>(\<le>) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $ t1 $ t2) =
@{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
| fm_of_term vs (\<^term>\<open>(=) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $ t1 $ t2) =
@{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
| fm_of_term vs (\<^term>\<open>(\<longleftrightarrow>) :: bool \<Rightarrow> bool \<Rightarrow> bool\<close> $ t1 $ t2) =
@{code Iff} (fm_of_term vs t1, fm_of_term vs t2)
| fm_of_term vs (\<^term>\<open>HOL.conj\<close> $ t1 $ t2) = @{code And} (fm_of_term vs t1, fm_of_term vs t2)
| fm_of_term vs (\<^term>\<open>HOL.disj\<close> $ t1 $ t2) = @{code Or} (fm_of_term vs t1, fm_of_term vs t2)
| fm_of_term vs (\<^term>\<open>HOL.implies\<close> $ t1 $ t2) = @{code Imp} (fm_of_term vs t1, fm_of_term vs t2)
| fm_of_term vs (\<^term>\<open>Not\<close> $ t') = @{code NOT} (fm_of_term vs t')
| fm_of_term vs (Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (xn, xT, p)) =
@{code E} (fm_of_term (("", dummyT) :: vs) p)
| fm_of_term vs (Const (\<^const_name>\<open>All\<close>, _) $ Abs (xn, xT, p)) =
@{code A} (fm_of_term (("", dummyT) :: vs) p)
| fm_of_term vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term \<^context> t);
fun term_of_num vs (@{code C} i) = \<^term>\<open>real_of_int :: int \<Rightarrow> real\<close> $
HOLogic.mk_number HOLogic.intT (@{code integer_of_int} i)
| term_of_num vs (@{code Bound} n) = Free (nth vs (@{code integer_of_nat} n))
| term_of_num vs (@{code Neg} t') = \<^term>\<open>uminus :: real \<Rightarrow> real\<close> $ term_of_num vs t'
| term_of_num vs (@{code Add} (t1, t2)) = \<^term>\<open>(+) :: real \<Rightarrow> real \<Rightarrow> real\<close> $
term_of_num vs t1 $ term_of_num vs t2
| term_of_num vs (@{code Sub} (t1, t2)) = \<^term>\<open>(-) :: real \<Rightarrow> real \<Rightarrow> real\<close> $
term_of_num vs t1 $ term_of_num vs t2
| term_of_num vs (@{code Mul} (i, t2)) = \<^term>\<open>(*) :: real \<Rightarrow> real \<Rightarrow> real\<close> $
term_of_num vs (@{code C} i) $ term_of_num vs t2
| term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));
fun term_of_fm vs @{code T} = \<^term>\<open>True\<close>
| term_of_fm vs @{code F} = \<^term>\<open>False\<close>
| term_of_fm vs (@{code Lt} t) = \<^term>\<open>(<) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $
term_of_num vs t $ \<^term>\<open>0::real\<close>
| term_of_fm vs (@{code Le} t) = \<^term>\<open>(\<le>) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $
term_of_num vs t $ \<^term>\<open>0::real\<close>
| term_of_fm vs (@{code Gt} t) = \<^term>\<open>(<) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $
\<^term>\<open>0::real\<close> $ term_of_num vs t
| term_of_fm vs (@{code Ge} t) = \<^term>\<open>(\<le>) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $
\<^term>\<open>0::real\<close> $ term_of_num vs t
| term_of_fm vs (@{code Eq} t) = \<^term>\<open>(=) :: real \<Rightarrow> real \<Rightarrow> bool\<close> $
term_of_num vs t $ \<^term>\<open>0::real\<close>
| term_of_fm vs (@{code NEq} t) = term_of_fm vs (@{code NOT} (@{code Eq} t))
| term_of_fm vs (@{code NOT} t') = HOLogic.Not $ term_of_fm vs t'
| term_of_fm vs (@{code And} (t1, t2)) = HOLogic.conj $ term_of_fm vs t1 $ term_of_fm vs t2
| term_of_fm vs (@{code Or} (t1, t2)) = HOLogic.disj $ term_of_fm vs t1 $ term_of_fm vs t2
| term_of_fm vs (@{code Imp} (t1, t2)) = HOLogic.imp $ term_of_fm vs t1 $ term_of_fm vs t2
| term_of_fm vs (@{code Iff} (t1, t2)) = \<^term>\<open>(\<longleftrightarrow>) :: bool \<Rightarrow> bool \<Rightarrow> bool\<close> $
term_of_fm vs t1 $ term_of_fm vs t2;
in fn (ctxt, t) =>
let
val vs = Term.add_frees t [];
val t' = (term_of_fm vs o @{code linrqe} o fm_of_term vs) t;
in (Thm.cterm_of ctxt o HOLogic.mk_Trueprop o HOLogic.mk_eq) (t, t') end
end
\<close>
ML_file \<open>ferrack_tac.ML\<close>
method_setup rferrack = \<open>
Scan.lift (Args.mode "no_quantify") >>
(fn q => fn ctxt => SIMPLE_METHOD' (Ferrack_Tac.linr_tac ctxt (not q)))
\<close> "decision procedure for linear real arithmetic"
lemma
fixes x :: real
shows "2 * x \<le> 2 * x \<and> 2 * x \<le> 2 * x + 1"
by rferrack
lemma
fixes x :: real
shows "\<exists>y \<le> x. x = y + 1"
by rferrack
lemma
fixes x :: real
shows "\<not> (\<exists>z. x + z = x + z + 1)"
by rferrack
end