(* Title: HOL/ex/Ballot.thy
Author: Lukas Bulwahn <lukas.bulwahn-at-gmail.com>
Author: Johannes Hölzl <hoelzl@in.tum.de>
*)
section \<open>Bertrand's Ballot Theorem\<close>
theory Ballot
imports
Complex_Main
"HOL-Library.FuncSet"
begin
subsection \<open>Preliminaries\<close>
lemma card_bij':
assumes "f \<in> A \<rightarrow> B" "\<And>x. x \<in> A \<Longrightarrow> g (f x) = x"
and "g \<in> B \<rightarrow> A" "\<And>x. x \<in> B \<Longrightarrow> f (g x) = x"
shows "card A = card B"
apply (rule bij_betw_same_card)
apply (rule bij_betwI)
apply fact+
done
subsection \<open>Formalization of Problem Statement\<close>
subsubsection \<open>Basic Definitions\<close>
datatype vote = A | B
definition
"all_countings a b = card {f \<in> {1 .. a + b} \<rightarrow>\<^sub>E {A, B}.
card {x \<in> {1 .. a + b}. f x = A} = a \<and> card {x \<in> {1 .. a + b}. f x = B} = b}"
definition
"valid_countings a b =
card {f\<in>{1..a+b} \<rightarrow>\<^sub>E {A, B}.
card {x\<in>{1..a+b}. f x = A} = a \<and> card {x\<in>{1..a+b}. f x = B} = b \<and>
(\<forall>m\<in>{1..a+b}. card {x\<in>{1..m}. f x = A} > card {x\<in>{1..m}. f x = B})}"
subsubsection \<open>Equivalence with Set Cardinality\<close>
lemma Collect_on_transfer:
assumes "rel_set R X Y"
shows "rel_fun (rel_fun R (=)) (rel_set R) (\<lambda>P. {x\<in>X. P x}) (\<lambda>P. {y\<in>Y. P y})"
using assms unfolding rel_fun_def rel_set_def by fast
lemma rel_fun_trans:
"rel_fun P Q g g' \<Longrightarrow> rel_fun R P f f' \<Longrightarrow> rel_fun R Q (\<lambda>x. g (f x)) (\<lambda>y. g' (f' y))"
by (auto simp: rel_fun_def)
lemma rel_fun_trans2:
"rel_fun P1 (rel_fun P2 Q) g g' \<Longrightarrow> rel_fun R P1 f1 f1' \<Longrightarrow> rel_fun R P2 f2 f2' \<Longrightarrow>
rel_fun R Q (\<lambda>x. g (f1 x) (f2 x)) (\<lambda>y. g' (f1' y) (f2' y))"
by (auto simp: rel_fun_def)
lemma rel_fun_trans2':
"rel_fun R (=) f1 f1' \<Longrightarrow> rel_fun R (=) f2 f2' \<Longrightarrow>
rel_fun R (=) (\<lambda>x. g (f1 x) (f2 x)) (\<lambda>y. g (f1' y) (f2' y))"
by (auto simp: rel_fun_def)
lemma rel_fun_const: "rel_fun R (=) (\<lambda>x. a) (\<lambda>y. a)"
by auto
lemma rel_fun_conj:
"rel_fun R (=) f f' \<Longrightarrow> rel_fun R (=) g g' \<Longrightarrow> rel_fun R (=) (\<lambda>x. f x \<and> g x) (\<lambda>y. f' y \<and> g' y)"
by (auto simp: rel_fun_def)
lemma rel_fun_ball:
"(\<And>i. i \<in> I \<Longrightarrow> rel_fun R (=) (f i) (f' i)) \<Longrightarrow> rel_fun R (=) (\<lambda>x. \<forall>i\<in>I. f i x) (\<lambda>y. \<forall>i\<in>I. f' i y)"
by (auto simp: rel_fun_def rel_set_def)
lemma
shows all_countings_set: "all_countings a b = card {V\<in>Pow {0..<a+b}. card V = a}"
(is "_ = card ?A")
and valid_countings_set: "valid_countings a b =
card {V\<in>Pow {0..<a+b}. card V = a \<and> (\<forall>m\<in>{1..a+b}. card ({0..<m} \<inter> V) > m - card ({0..<m} \<inter> V))}"
(is "_ = card ?V")
proof -
define P where "P j i \<longleftrightarrow> i < a + b \<and> j = Suc i" for j i
have unique_P: "bi_unique P" and total_P: "\<And>m. m \<le> a + b \<Longrightarrow> rel_set P {1..m} {0..<m}"
by (auto simp add: bi_unique_def rel_set_def P_def Suc_le_eq gr0_conv_Suc)
have rel_fun_P: "\<And>R f g. (\<And>i. i < a+b \<Longrightarrow> R (f (Suc i)) (g i)) \<Longrightarrow> rel_fun P R f g"
by (simp add: rel_fun_def P_def)
define R where "R f V \<longleftrightarrow>
V \<subseteq> {0..<a+b} \<and> f \<in> extensional {1..a+b} \<and> (\<forall>i<a+b. i \<in> V \<longleftrightarrow> f (Suc i) = A)" for f V
{ fix f g :: "nat \<Rightarrow> vote" assume "f \<in> extensional {1..a + b}" "g \<in> extensional {1..a + b}"
moreover assume "\<forall>i<a + b. (f (Suc i) = A) = (g (Suc i) = A)"
then have "\<forall>i<a + b. f (Suc i) = g (Suc i)"
by (metis vote.nchotomy)
ultimately have "f i = g i" for i
by (cases "i \<in> {1..a+b}") (auto simp: extensional_def Suc_le_eq gr0_conv_Suc) }
then have unique_R: "bi_unique R"
by (auto simp: bi_unique_def R_def)
have "f \<in> extensional {1..a + b} \<Longrightarrow> \<exists>V\<in>Pow {0..<a + b}. R f V" for f
by (intro bexI[of _ "{i. i < a+b \<and> f (Suc i) = A}"]) (auto simp add: R_def PiE_def)
moreover have "V \<in> Pow {0..<a + b} \<Longrightarrow> \<exists>f\<in>extensional {1..a+b}. R f V" for V
by (intro bexI[of _ "\<lambda>i\<in>{1..a+b}. if i - 1 \<in> V then A else B"]) (auto simp add: R_def PiE_def)
ultimately have total_R: "rel_set R (extensional {1..a+b}) (Pow {0..<a+b})"
by (auto simp: rel_set_def)
have P: "rel_fun R (rel_fun P (=)) (\<lambda>f x. f x = A) (\<lambda>V y. y \<in> V)"
by (auto simp: P_def R_def Suc_le_eq gr0_conv_Suc rel_fun_def)
have eq_B: "x = B \<longleftrightarrow> x \<noteq> A" for x
by (cases x; simp)
{ fix f and m :: nat
have "card {x\<in>{1..m}. f x = B} = card ({1..m} - {x\<in>{1..m}. f x = A})"
by (simp add: eq_B set_diff_eq cong: conj_cong)
also have "\<dots> = m - card {x\<in>{1..m}. f x = A}"
by (subst card_Diff_subset) auto
finally have "card {x\<in>{1..m}. f x = B} = m - card {x\<in>{1..m}. f x = A}" . }
note card_B = this
note transfers = rel_fun_const card_transfer[THEN rel_funD, OF unique_R] rel_fun_conj rel_fun_ball
Collect_on_transfer[THEN rel_funD, OF total_R] Collect_on_transfer[THEN rel_funD, OF total_P]
rel_fun_trans[OF card_transfer, OF unique_P] rel_fun_trans[OF Collect_on_transfer[OF total_P]]
rel_fun_trans2'[where g="(=)"] rel_fun_trans2'[where g="(<)"] rel_fun_trans2'[where g="(-)"]
have "all_countings a b = card {f \<in> extensional {1..a + b}. card {x \<in> {1..a + b}. f x = A} = a}"
using card_B by (simp add: all_countings_def PiE_iff vote.nchotomy cong: conj_cong)
also have "\<dots> = card {V\<in>Pow {0..<a+b}. card ({x\<in>{0 ..< a + b}. x \<in> V}) = a}"
by (intro P order_refl transfers)
finally show "all_countings a b = card ?A"
unfolding Int_def[symmetric] by (simp add: Int_absorb1 cong: conj_cong)
have "valid_countings a b = card {f\<in>extensional {1..a+b}.
card {x\<in>{1..a+b}. f x = A} = a \<and> (\<forall>m\<in>{1..a+b}. card {x\<in>{1..m}. f x = A} > m - card {x\<in>{1..m}. f x = A})}"
using card_B by (simp add: valid_countings_def PiE_iff vote.nchotomy cong: conj_cong)
also have "\<dots> = card {V\<in>Pow {0..<a+b}. card {x\<in>{0..<a+b}. x\<in>V} = a \<and>
(\<forall>m\<in>{1..a+b}. card {x\<in>{0..<m}. x\<in>V} > m - card {x\<in>{0..<m}. x\<in>V})}"
by (intro P order_refl transfers) auto
finally show "valid_countings a b = card ?V"
unfolding Int_def[symmetric] by (simp add: Int_absorb1 cong: conj_cong)
qed
lemma all_countings: "all_countings a b = (a + b) choose a"
unfolding all_countings_set by (simp add: n_subsets)
subsection \<open>Facts About \<^term>\<open>valid_countings\<close>\<close>
subsubsection \<open>Non-Recursive Cases\<close>
lemma card_V_eq_a: "V \<subseteq> {0..<a} \<Longrightarrow> card V = a \<longleftrightarrow> V = {0..<a}"
using card_subset_eq[of "{0..<a}" V] by auto
lemma valid_countings_a_0: "valid_countings a 0 = 1"
by (simp add: valid_countings_set card_V_eq_a cong: conj_cong)
lemma valid_countings_eq_zero:
"a \<le> b \<Longrightarrow> 0 < b \<Longrightarrow> valid_countings a b = 0"
by (auto simp add: valid_countings_set Int_absorb1 intro!: bexI[of _ "a + b"])
lemma Ico_subset_finite: "i \<subseteq> {a ..< b::nat} \<Longrightarrow> finite i"
by (auto dest: finite_subset)
lemma Icc_Suc2: "a \<le> b \<Longrightarrow> {a..Suc b} = insert (Suc b) {a..b}"
by auto
lemma Ico_Suc2: "a \<le> b \<Longrightarrow> {a..<Suc b} = insert b {a..<b}"
by auto
lemma valid_countings_Suc_Suc:
assumes "b < a"
shows "valid_countings (Suc a) (Suc b) = valid_countings a (Suc b) + valid_countings (Suc a) b"
proof -
let ?l = "Suc (a + b)"
let ?Q = "\<lambda>V c. \<forall>m\<in>{1..c}. m - card ({0..<m} \<inter> V) < card ({0..<m} \<inter> V)"
let ?V = "\<lambda>P. {V. (V \<in> Pow {0..<Suc ?l} \<and> P V) \<and> card V = Suc a \<and> ?Q V (Suc ?l)}"
have "valid_countings (Suc a) (Suc b) = card (?V (\<lambda>V. ?l \<notin> V)) + card (?V (\<lambda>V. ?l \<in> V))"
unfolding valid_countings_set
by (subst card_Un_disjoint[symmetric]) (auto simp add: set_eq_iff intro!: arg_cong[where f=card])
also have "card (?V (\<lambda>V. ?l \<in> V)) = valid_countings a (Suc b)"
unfolding valid_countings_set
proof (rule card_bij'[where f="\<lambda>V. V - {?l}" and g="insert ?l"])
have *: "\<And>m V. m \<in> {1..a + Suc b} \<Longrightarrow> {0..<m} \<inter> (V - {?l}) = {0..<m} \<inter> V"
by auto
show "(\<lambda>V. V - {?l}) \<in> ?V (\<lambda>V. ?l \<in> V) \<rightarrow> {V \<in> Pow {0..<a + Suc b}. card V = a \<and> ?Q V (a + Suc b)}"
by (auto simp: Ico_subset_finite *)
{ fix V assume V: "V \<subseteq> {0..<?l}"
then have "finite V" "?l \<notin> V" "{0..<Suc ?l} \<inter> V = V"
by (auto dest: finite_subset)
with V have "card (insert ?l V) = Suc (card V)"
"card ({0..<m} \<inter> insert ?l V) = (if m = Suc ?l then Suc (card V) else card ({0..<m} \<inter> V))"
if "m \<le> Suc ?l" for m
using that by auto }
then show "insert ?l \<in> {V \<in> Pow {0..<a + Suc b}. card V = a \<and> ?Q V (a + Suc b)} \<rightarrow> ?V (\<lambda>V. ?l \<in> V)"
using \<open>b < a\<close> by auto
qed auto
also have "card (?V (\<lambda>V. ?l \<notin> V)) = valid_countings (Suc a) b"
unfolding valid_countings_set
proof (intro arg_cong[where f="\<lambda>P. card {x. P x}"] ext conj_cong)
fix V assume "V \<in> Pow {0..<Suc a + b}" and [simp]: "card V = Suc a"
then have [simp]: "V \<subseteq> {0..<Suc ?l}"
by auto
show "?Q V (Suc ?l) = ?Q V (Suc a + b)"
using \<open>b<a\<close> by (simp add: Int_absorb1 Icc_Suc2)
qed (auto simp: subset_eq less_Suc_eq)
finally show ?thesis
by simp
qed
lemma valid_countings:
"(a + b) * valid_countings a b = (a - b) * ((a + b) choose a)"
proof (induct a arbitrary: b)
case 0 show ?case
by (cases b) (simp_all add: valid_countings_eq_zero)
next
case (Suc a) note Suc_a = this
show ?case
proof (induct b)
case (Suc b) note Suc_b = this
show ?case
proof cases
assume "a \<le> b" then show ?thesis
by (simp add: valid_countings_eq_zero)
next
assume "\<not> a \<le> b"
then have "b < a" by simp
have "Suc a * (a - Suc b) + (Suc a - b) * Suc b =
(Suc a * a - Suc a * Suc b) + (Suc a * Suc b - Suc b * b)"
by (simp add: algebra_simps)
also have "\<dots> = (Suc a * a + (Suc a * Suc b - Suc b * b)) - Suc a * Suc b"
using \<open>b<a\<close> by (intro add_diff_assoc2 mult_mono) auto
also have "\<dots> = (Suc a * a + Suc a * Suc b) - Suc b * b - Suc a * Suc b"
using \<open>b<a\<close> by (intro arg_cong2[where f="(-)"] add_diff_assoc mult_mono) auto
also have "\<dots> = (Suc a * Suc (a + b)) - (Suc b * Suc (a + b))"
by (simp add: algebra_simps)
finally have rearrange: "Suc a * (a - Suc b) + (Suc a - b) * Suc b = (Suc a - Suc b) * Suc (a + b)"
unfolding diff_mult_distrib by simp
have "(Suc a * Suc (a + b)) * ((Suc a + Suc b) * valid_countings (Suc a) (Suc b)) =
(Suc a + Suc b) * Suc a * ((a + Suc b) * valid_countings a (Suc b) + (Suc a + b) * valid_countings (Suc a) b)"
unfolding valid_countings_Suc_Suc[OF \<open>b < a\<close>] by (simp add: field_simps)
also have "... = (Suc a + Suc b) * ((a - Suc b) * (Suc a * (Suc (a + b) choose a)) +
(Suc a - b) * (Suc a * (Suc (a + b) choose Suc a)))"
unfolding Suc_a Suc_b by (simp add: field_simps)
also have "... = (Suc a * (a - Suc b) + (Suc a - b) * Suc b) * (Suc (Suc a + b) * (Suc a + b choose a))"
unfolding Suc_times_binomial_add by (simp add: field_simps)
also have "... = Suc a * (Suc a * (a - Suc b) + (Suc a - b) * Suc b) * (Suc a + Suc b choose Suc a)"
unfolding Suc_times_binomial_eq by (simp add: field_simps)
also have "... = (Suc a * Suc (a + b)) * ((Suc a - Suc b) * (Suc a + Suc b choose Suc a))"
unfolding rearrange by (simp only: mult_ac)
finally show ?thesis
unfolding mult_cancel1 by simp
qed
qed (simp add: valid_countings_a_0)
qed
lemma valid_countings_eq[code]:
"valid_countings a b = (if a + b = 0 then 1 else ((a - b) * ((a + b) choose a)) div (a + b))"
by (simp add: valid_countings[symmetric] valid_countings_a_0)
subsection \<open>Relation Between \<^term>\<open>valid_countings\<close> and \<^term>\<open>all_countings\<close>\<close>
lemma main_nat: "(a + b) * valid_countings a b = (a - b) * all_countings a b"
unfolding valid_countings all_countings ..
lemma main_real:
assumes "b < a"
shows "valid_countings a b = (a - b) / (a + b) * all_countings a b"
using assms
proof -
from main_nat[of a b] \<open>b < a\<close> have
"(real a + real b) * real (valid_countings a b) = (real a - real b) * real (all_countings a b)"
by (simp only: of_nat_add[symmetric] of_nat_mult[symmetric]) auto
from this \<open>b < a\<close> show ?thesis
by (subst mult_left_cancel[of "real a + real b", symmetric]) auto
qed
lemma
"valid_countings a b = (if a \<le> b then (if b = 0 then 1 else 0) else (a - b) / (a + b) * all_countings a b)"
proof (cases "a \<le> b")
case False
from this show ?thesis by (simp add: main_real)
next
case True
from this show ?thesis
by (auto simp add: valid_countings_a_0 all_countings valid_countings_eq_zero)
qed
subsubsection \<open>Executable Definition\<close>
declare all_countings_def [code del]
declare all_countings[code]
value "all_countings 1 0"
value "all_countings 0 1"
value "all_countings 1 1"
value "all_countings 2 1"
value "all_countings 1 2"
value "all_countings 2 4"
value "all_countings 4 2"
subsubsection \<open>Executable Definition\<close>
declare valid_countings_def [code del]
value "valid_countings 1 0"
value "valid_countings 0 1"
value "valid_countings 1 1"
value "valid_countings 2 1"
value "valid_countings 1 2"
value "valid_countings 2 4"
value "valid_countings 4 2"
end