src/HOL/ex/ML.thy
author paulson
Thu, 12 Sep 2019 14:51:50 +0100
changeset 70689 67360d50ebb3
parent 69597 ff784d5a5bfb
permissions -rw-r--r--
merged

(*  Title:      HOL/ex/ML.thy
    Author:     Makarius
*)

section \<open>Isabelle/ML basics\<close>

theory "ML"
imports Main
begin

section \<open>ML expressions\<close>

text \<open>
  The Isabelle command \<^theory_text>\<open>ML\<close> allows to embed Isabelle/ML source into the
  formal text. It is type-checked, compiled, and run within that environment.

  Note that side-effects should be avoided, unless the intention is to change
  global parameters of the run-time environment (rare).

  ML top-level bindings are managed within the theory context.
\<close>

ML \<open>1 + 1\<close>

ML \<open>val a = 1\<close>
ML \<open>val b = 1\<close>
ML \<open>val c = a + b\<close>


section \<open>Antiquotations\<close>

text \<open>
  There are some language extensions (via antiquotations), as explained in the
  ``Isabelle/Isar implementation manual'', chapter 0.
\<close>

ML \<open>length []\<close>
ML \<open>\<^assert> (length [] = 0)\<close>


text \<open>Formal entities from the surrounding context may be referenced as
  follows:\<close>

term "1 + 1"   \<comment> \<open>term within theory source\<close>

ML \<open>\<^term>\<open>1 + 1\<close>   (* term as symbolic ML datatype value *)\<close>

ML \<open>\<^term>\<open>1 + (1::int)\<close>\<close>


ML \<open>
  (* formal source with position information *)
  val s = \<open>1 + 1\<close>;

  (* read term via old-style string interface *)
  val t = Syntax.read_term \<^context> (Syntax.implode_input s);
\<close>


section \<open>Recursive ML evaluation\<close>

ML \<open>
  ML \<open>ML \<open>val a = @{thm refl}\<close>\<close>;
  ML \<open>val b = @{thm sym}\<close>;
  val c = @{thm trans}
  val thms = [a, b, c];
\<close>


section \<open>IDE support\<close>

text \<open>
  ML embedded into the Isabelle environment is connected to the Prover IDE.
  Poly/ML provides:

    \<^item> precise positions for warnings / errors
    \<^item> markup for defining positions of identifiers
    \<^item> markup for inferred types of sub-expressions
    \<^item> pretty-printing of ML values with markup
    \<^item> completion of ML names
    \<^item> source-level debugger
\<close>

ML \<open>fn i => fn list => length list + i\<close>


section \<open>Example: factorial and ackermann function in Isabelle/ML\<close>

ML \<open>
  fun factorial 0 = 1
    | factorial n = n * factorial (n - 1)
\<close>

ML \<open>factorial 42\<close>
ML \<open>factorial 10000 div factorial 9999\<close>

text \<open>See \<^url>\<open>http://mathworld.wolfram.com/AckermannFunction.html\<close>.\<close>

ML \<open>
  fun ackermann 0 n = n + 1
    | ackermann m 0 = ackermann (m - 1) 1
    | ackermann m n = ackermann (m - 1) (ackermann m (n - 1))
\<close>

ML \<open>timeit (fn () => ackermann 3 10)\<close>


section \<open>Parallel Isabelle/ML\<close>

text \<open>
  Future.fork/join/cancel manage parallel evaluation.

  Note that within Isabelle theory documents, the top-level command boundary
  may not be transgressed without special precautions. This is normally
  managed by the system when performing parallel proof checking.
\<close>

ML \<open>
  val x = Future.fork (fn () => ackermann 3 10);
  val y = Future.fork (fn () => ackermann 3 10);
  val z = Future.join x + Future.join y
\<close>

text \<open>
  The \<^ML_structure>\<open>Par_List\<close> module provides high-level combinators for
  parallel list operations.
\<close>

ML \<open>timeit (fn () => map (fn n => ackermann 3 n) (1 upto 10))\<close>
ML \<open>timeit (fn () => Par_List.map (fn n => ackermann 3 n) (1 upto 10))\<close>


section \<open>Function specifications in Isabelle/HOL\<close>

fun factorial :: "nat \<Rightarrow> nat"
where
  "factorial 0 = 1"
| "factorial (Suc n) = Suc n * factorial n"

term "factorial 4"  \<comment> \<open>symbolic term\<close>
value "factorial 4"  \<comment> \<open>evaluation via ML code generation in the background\<close>

declare [[ML_source_trace]]
ML \<open>\<^term>\<open>factorial 4\<close>\<close>  \<comment> \<open>symbolic term in ML\<close>
ML \<open>@{code "factorial"}\<close>  \<comment> \<open>ML code from function specification\<close>


fun ackermann :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
  "ackermann 0 n = n + 1"
| "ackermann (Suc m) 0 = ackermann m 1"
| "ackermann (Suc m) (Suc n) = ackermann m (ackermann (Suc m) n)"

value "ackermann 3 5"

end