(* Title: HOLCF/Cfun1.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
The type -> of continuous functions.
*)
(* ------------------------------------------------------------------------ *)
(* derive old type definition rules for Abs_CFun & Rep_CFun *)
(* Rep_CFun and Abs_CFun should be replaced by Rep_Cfun anf Abs_Cfun in future *)
(* ------------------------------------------------------------------------ *)
Goal "Rep_CFun fo : CFun";
by (rtac Rep_CFun 1);
qed "Rep_Cfun";
Goal "Abs_CFun (Rep_CFun fo) = fo";
by (rtac Rep_CFun_inverse 1);
qed "Rep_Cfun_inverse";
Goal "f:CFun==>Rep_CFun(Abs_CFun f)=f";
by (etac Abs_CFun_inverse 1);
qed "Abs_Cfun_inverse";
(* ------------------------------------------------------------------------ *)
(* less_cfun is a partial order on type 'a -> 'b *)
(* ------------------------------------------------------------------------ *)
Goalw [less_cfun_def] "(f::'a->'b) << f";
by (rtac refl_less 1);
qed "refl_less_cfun";
Goalw [less_cfun_def]
"[|(f1::'a->'b) << f2; f2 << f1|] ==> f1 = f2";
by (rtac injD 1);
by (rtac antisym_less 2);
by (atac 3);
by (atac 2);
by (rtac inj_inverseI 1);
by (rtac Rep_Cfun_inverse 1);
qed "antisym_less_cfun";
Goalw [less_cfun_def]
"[|(f1::'a->'b) << f2; f2 << f3|] ==> f1 << f3";
by (etac trans_less 1);
by (atac 1);
qed "trans_less_cfun";
(* ------------------------------------------------------------------------ *)
(* lemmas about application of continuous functions *)
(* ------------------------------------------------------------------------ *)
Goal "[| f=g; x=y |] ==> f$x = g$y";
by (Asm_simp_tac 1);
qed "cfun_cong";
Goal "f=g ==> f$x = g$x";
by (Asm_simp_tac 1);
qed "cfun_fun_cong";
Goal "x=y ==> f$x = f$y";
by (Asm_simp_tac 1);
qed "cfun_arg_cong";
(* ------------------------------------------------------------------------ *)
(* additional lemma about the isomorphism between -> and Cfun *)
(* ------------------------------------------------------------------------ *)
Goal "cont f ==> Rep_CFun (Abs_CFun f) = f";
by (rtac Abs_Cfun_inverse 1);
by (rewtac CFun_def);
by (etac (mem_Collect_eq RS ssubst) 1);
qed "Abs_Cfun_inverse2";
(* ------------------------------------------------------------------------ *)
(* simplification of application *)
(* ------------------------------------------------------------------------ *)
Goal "cont f ==> (Abs_CFun f)$x = f x";
by (etac (Abs_Cfun_inverse2 RS fun_cong) 1);
qed "Cfunapp2";
(* ------------------------------------------------------------------------ *)
(* beta - equality for continuous functions *)
(* ------------------------------------------------------------------------ *)
Goal "cont(c1) ==> (LAM x .c1 x)$u = c1 u";
by (rtac Cfunapp2 1);
by (atac 1);
qed "beta_cfun";