(* Title: Pure/more_thm.ML
Author: Makarius
Further operations on type ctyp/cterm/thm, outside the inference kernel.
*)
infix aconvc;
signature BASIC_THM =
sig
include BASIC_THM
structure Ctermtab: TABLE
structure Thmtab: TABLE
val aconvc: cterm * cterm -> bool
type attribute = Context.generic * thm -> Context.generic option * thm option
end;
signature THM =
sig
include THM
structure Ctermtab: TABLE
structure Thmtab: TABLE
val aconvc: cterm * cterm -> bool
val add_cterm_frees: cterm -> cterm list -> cterm list
val all_name: string * cterm -> cterm -> cterm
val all: cterm -> cterm -> cterm
val mk_binop: cterm -> cterm -> cterm -> cterm
val dest_binop: cterm -> cterm * cterm
val dest_implies: cterm -> cterm * cterm
val dest_equals: cterm -> cterm * cterm
val dest_equals_lhs: cterm -> cterm
val dest_equals_rhs: cterm -> cterm
val lhs_of: thm -> cterm
val rhs_of: thm -> cterm
val thm_ord: thm * thm -> order
val cterm_cache: (cterm -> 'a) -> cterm -> 'a
val thm_cache: (thm -> 'a) -> thm -> 'a
val is_reflexive: thm -> bool
val eq_thm: thm * thm -> bool
val eq_thm_thy: thm * thm -> bool
val eq_thm_prop: thm * thm -> bool
val equiv_thm: thm * thm -> bool
val class_triv: theory -> class -> thm
val of_sort: ctyp * sort -> thm list
val check_shyps: sort list -> thm -> thm
val is_dummy: thm -> bool
val plain_prop_of: thm -> term
val add_thm: thm -> thm list -> thm list
val del_thm: thm -> thm list -> thm list
val merge_thms: thm list * thm list -> thm list
val full_rules: thm Item_Net.T
val intro_rules: thm Item_Net.T
val elim_rules: thm Item_Net.T
val elim_implies: thm -> thm -> thm
val forall_elim_var: int -> thm -> thm
val forall_elim_vars: int -> thm -> thm
val certify_inst: theory ->
((indexname * sort) * typ) list * ((indexname * typ) * term) list ->
(ctyp * ctyp) list * (cterm * cterm) list
val certify_instantiate:
((indexname * sort) * typ) list * ((indexname * typ) * term) list -> thm -> thm
val forall_intr_frees: thm -> thm
val unvarify_global: thm -> thm
val close_derivation: thm -> thm
val add_axiom: Proof.context -> binding * term -> theory -> (string * thm) * theory
val add_axiom_global: binding * term -> theory -> (string * thm) * theory
val add_def: Proof.context -> bool -> bool -> binding * term -> theory -> (string * thm) * theory
val add_def_global: bool -> bool -> binding * term -> theory -> (string * thm) * theory
type attribute = Context.generic * thm -> Context.generic option * thm option
type binding = binding * attribute list
val empty_binding: binding
val rule_attribute: (Context.generic -> thm -> thm) -> attribute
val declaration_attribute: (thm -> Context.generic -> Context.generic) -> attribute
val mixed_attribute: (Context.generic * thm -> Context.generic * thm) -> attribute
val apply_attribute: attribute -> thm -> Context.generic -> thm * Context.generic
val attribute_declaration: attribute -> thm -> Context.generic -> Context.generic
val theory_attributes: attribute list -> thm -> theory -> thm * theory
val proof_attributes: attribute list -> thm -> Proof.context -> thm * Proof.context
val no_attributes: 'a -> 'a * 'b list
val simple_fact: 'a -> ('a * 'b list) list
val tag_rule: string * string -> thm -> thm
val untag_rule: string -> thm -> thm
val tag: string * string -> attribute
val untag: string -> attribute
val def_name: string -> string
val def_name_optional: string -> string -> string
val def_binding: Binding.binding -> Binding.binding
val def_binding_optional: Binding.binding -> Binding.binding -> Binding.binding
val has_name_hint: thm -> bool
val get_name_hint: thm -> string
val put_name_hint: string -> thm -> thm
val theoremK: string
val lemmaK: string
val corollaryK: string
val legacy_get_kind: thm -> string
val kind_rule: string -> thm -> thm
val kind: string -> attribute
val register_proofs: thm list -> theory -> theory
val join_theory_proofs: theory -> unit
end;
structure Thm: THM =
struct
(** basic operations **)
(* collecting cterms *)
val op aconvc = op aconv o pairself Thm.term_of;
fun add_cterm_frees ct =
let
val cert = Thm.cterm_of (Thm.theory_of_cterm ct);
val t = Thm.term_of ct;
in Term.fold_aterms (fn v as Free _ => insert (op aconvc) (cert v) | _ => I) t end;
(* cterm constructors and destructors *)
fun all_name (x, t) A =
let
val cert = Thm.cterm_of (Thm.theory_of_cterm t);
val T = #T (Thm.rep_cterm t);
in Thm.apply (cert (Const ("all", (T --> propT) --> propT))) (Thm.lambda_name (x, t) A) end;
fun all t A = all_name ("", t) A;
fun mk_binop c a b = Thm.apply (Thm.apply c a) b;
fun dest_binop ct = (Thm.dest_arg1 ct, Thm.dest_arg ct);
fun dest_implies ct =
(case Thm.term_of ct of
Const ("==>", _) $ _ $ _ => dest_binop ct
| _ => raise TERM ("dest_implies", [Thm.term_of ct]));
fun dest_equals ct =
(case Thm.term_of ct of
Const ("==", _) $ _ $ _ => dest_binop ct
| _ => raise TERM ("dest_equals", [Thm.term_of ct]));
fun dest_equals_lhs ct =
(case Thm.term_of ct of
Const ("==", _) $ _ $ _ => Thm.dest_arg1 ct
| _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
fun dest_equals_rhs ct =
(case Thm.term_of ct of
Const ("==", _) $ _ $ _ => Thm.dest_arg ct
| _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
val lhs_of = dest_equals_lhs o Thm.cprop_of;
val rhs_of = dest_equals_rhs o Thm.cprop_of;
(* thm order: ignores theory context! *)
fun thm_ord (th1, th2) =
let
val {shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...} = Thm.rep_thm th1;
val {shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...} = Thm.rep_thm th2;
in
(case Term_Ord.fast_term_ord (prop1, prop2) of
EQUAL =>
(case list_ord (prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord) (tpairs1, tpairs2) of
EQUAL =>
(case list_ord Term_Ord.fast_term_ord (hyps1, hyps2) of
EQUAL => list_ord Term_Ord.sort_ord (shyps1, shyps2)
| ord => ord)
| ord => ord)
| ord => ord)
end;
(* tables and caches *)
structure Ctermtab = Table(type key = cterm val ord = Term_Ord.fast_term_ord o pairself Thm.term_of);
structure Thmtab = Table(type key = thm val ord = thm_ord);
fun cterm_cache f = Cache.create Ctermtab.empty Ctermtab.lookup Ctermtab.update f;
fun thm_cache f = Cache.create Thmtab.empty Thmtab.lookup Thmtab.update f;
(* equality *)
fun is_reflexive th = op aconv (Logic.dest_equals (Thm.prop_of th))
handle TERM _ => false;
fun eq_thm ths =
Context.joinable (pairself Thm.theory_of_thm ths) andalso
is_equal (thm_ord ths);
val eq_thm_thy = Theory.eq_thy o pairself Thm.theory_of_thm;
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
(* pattern equivalence *)
fun equiv_thm ths =
Pattern.equiv (Theory.merge (pairself Thm.theory_of_thm ths)) (pairself Thm.full_prop_of ths);
(* type classes and sorts *)
fun class_triv thy c =
Thm.of_class (Thm.ctyp_of thy (TVar ((Name.aT, 0), [c])), c);
fun of_sort (T, S) = map (fn c => Thm.of_class (T, c)) S;
fun check_shyps sorts raw_th =
let
val th = Thm.strip_shyps raw_th;
val prt_sort = Syntax.pretty_sort_global (Thm.theory_of_thm th);
val pending = Sorts.subtract sorts (Thm.extra_shyps th);
in
if null pending then th
else error (Pretty.string_of (Pretty.block (Pretty.str "Pending sort hypotheses:" ::
Pretty.brk 1 :: Pretty.commas (map prt_sort pending))))
end;
(* misc operations *)
fun is_dummy thm =
(case try Logic.dest_term (Thm.concl_of thm) of
NONE => false
| SOME t => Term.is_dummy_pattern t);
fun plain_prop_of raw_thm =
let
val thm = Thm.strip_shyps raw_thm;
fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
in
if not (null hyps) then
err "theorem may not contain hypotheses"
else if not (null (Thm.extra_shyps thm)) then
err "theorem may not contain sort hypotheses"
else if not (null tpairs) then
err "theorem may not contain flex-flex pairs"
else prop
end;
(* collections of theorems in canonical order *)
val add_thm = update eq_thm_prop;
val del_thm = remove eq_thm_prop;
val merge_thms = merge eq_thm_prop;
val full_rules = Item_Net.init eq_thm_prop (single o Thm.full_prop_of);
val intro_rules = Item_Net.init eq_thm_prop (single o Thm.concl_of);
val elim_rules = Item_Net.init eq_thm_prop (single o Thm.major_prem_of);
(** basic derived rules **)
(*Elimination of implication
A A ==> B
------------
B
*)
fun elim_implies thA thAB = Thm.implies_elim thAB thA;
(* forall_elim_var(s) *)
local
fun forall_elim_vars_aux strip_vars i th =
let
val thy = Thm.theory_of_thm th;
val {tpairs, prop, ...} = Thm.rep_thm th;
val add_used = Term.fold_aterms
(fn Var ((x, j), _) => if i = j then insert (op =) x else I | _ => I);
val used = fold (fn (t, u) => add_used t o add_used u) tpairs (add_used prop []);
val vars = strip_vars prop;
val cvars = (Name.variant_list used (map #1 vars), vars)
|> ListPair.map (fn (x, (_, T)) => Thm.cterm_of thy (Var ((x, i), T)));
in fold Thm.forall_elim cvars th end;
in
val forall_elim_vars = forall_elim_vars_aux Term.strip_all_vars;
fun forall_elim_var i th =
forall_elim_vars_aux
(fn Const ("all", _) $ Abs (a, T, _) => [(a, T)]
| _ => raise THM ("forall_elim_vars", i, [th])) i th;
end;
(* certify_instantiate *)
fun certify_inst thy (instT, inst) =
(map (fn (v, T) => (Thm.ctyp_of thy (TVar v), Thm.ctyp_of thy T)) instT,
map (fn (v, t) => (Thm.cterm_of thy (Var v), Thm.cterm_of thy t)) inst);
fun certify_instantiate insts th =
Thm.instantiate (certify_inst (Thm.theory_of_thm th) insts) th;
(* forall_intr_frees: generalization over all suitable Free variables *)
fun forall_intr_frees th =
let
val thy = Thm.theory_of_thm th;
val {prop, hyps, tpairs, ...} = Thm.rep_thm th;
val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
val frees = Term.fold_aterms (fn Free v =>
if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
in fold (Thm.forall_intr o Thm.cterm_of thy o Free) frees th end;
(* unvarify_global: global schematic variables *)
fun unvarify_global th =
let
val prop = Thm.full_prop_of th;
val _ = map Logic.unvarify_global (prop :: Thm.hyps_of th)
handle TERM (msg, _) => raise THM (msg, 0, [th]);
val instT = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
let val T' = Term_Subst.instantiateT instT T
in (((a, i), T'), Free ((a, T'))) end);
in certify_instantiate (instT, inst) th end;
(* close_derivation *)
fun close_derivation thm =
if Thm.derivation_name thm = "" then Thm.name_derivation "" thm
else thm;
(** specification primitives **)
(* rules *)
fun stripped_sorts thy t =
let
val tfrees = rev (map TFree (Term.add_tfrees t []));
val tfrees' = map (fn a => TFree (a, [])) (Name.invent Name.context Name.aT (length tfrees));
val strip = tfrees ~~ tfrees';
val recover = map (pairself (Thm.ctyp_of thy o Logic.varifyT_global) o swap) strip;
val t' = Term.map_types (Term.map_atyps (perhaps (AList.lookup (op =) strip))) t;
in (strip, recover, t') end;
fun add_axiom ctxt (b, prop) thy =
let
val b' = if Binding.is_empty b then Binding.name ("unnamed_axiom_" ^ serial_string ()) else b;
val _ = Sign.no_vars ctxt prop;
val (strip, recover, prop') = stripped_sorts thy prop;
val constraints = map (fn (TFree (_, S), T) => (T, S)) strip;
val of_sorts = maps (fn (T as TFree (_, S), _) => of_sort (Thm.ctyp_of thy T, S)) strip;
val thy' = thy
|> Theory.add_axiom ctxt (b', Logic.list_implies (maps Logic.mk_of_sort constraints, prop'));
val axm_name = Sign.full_name thy' b';
val axm' = Thm.axiom thy' axm_name;
val thm =
Thm.instantiate (recover, []) axm'
|> unvarify_global
|> fold elim_implies of_sorts;
in ((axm_name, thm), thy') end;
fun add_axiom_global arg thy = add_axiom (Syntax.init_pretty_global thy) arg thy;
fun add_def ctxt unchecked overloaded (b, prop) thy =
let
val _ = Sign.no_vars ctxt prop;
val prems = map (Thm.cterm_of thy) (Logic.strip_imp_prems prop);
val (_, recover, concl') = stripped_sorts thy (Logic.strip_imp_concl prop);
val thy' = Theory.add_def ctxt unchecked overloaded (b, concl') thy;
val axm_name = Sign.full_name thy' b;
val axm' = Thm.axiom thy' axm_name;
val thm =
Thm.instantiate (recover, []) axm'
|> unvarify_global
|> fold_rev Thm.implies_intr prems;
in ((axm_name, thm), thy') end;
fun add_def_global unchecked overloaded arg thy =
add_def (Syntax.init_pretty_global thy) unchecked overloaded arg thy;
(** attributes **)
(*attributes subsume any kind of rules or context modifiers*)
type attribute = Context.generic * thm -> Context.generic option * thm option;
type binding = binding * attribute list;
val empty_binding: binding = (Binding.empty, []);
fun rule_attribute f (x, th) = (NONE, SOME (f x th));
fun declaration_attribute f (x, th) = (SOME (f th x), NONE);
fun mixed_attribute f (x, th) = let val (x', th') = f (x, th) in (SOME x', SOME th') end;
fun apply_attribute (att: attribute) th x =
let val (x', th') = att (x, th)
in (the_default th th', the_default x x') end;
fun attribute_declaration att th x = #2 (apply_attribute att th x);
fun apply_attributes mk dest =
let
fun app [] th x = (th, x)
| app (att :: atts) th x = apply_attribute att th (mk x) ||> dest |-> app atts;
in app end;
val theory_attributes = apply_attributes Context.Theory Context.the_theory;
val proof_attributes = apply_attributes Context.Proof Context.the_proof;
fun no_attributes x = (x, []);
fun simple_fact x = [(x, [])];
(*** theorem tags ***)
(* add / delete tags *)
fun tag_rule tg = Thm.map_tags (insert (op =) tg);
fun untag_rule s = Thm.map_tags (filter_out (fn (s', _) => s = s'));
fun tag tg = rule_attribute (K (tag_rule tg));
fun untag s = rule_attribute (K (untag_rule s));
(* def_name *)
fun def_name c = c ^ "_def";
fun def_name_optional c "" = def_name c
| def_name_optional _ name = name;
val def_binding = Binding.map_name def_name;
fun def_binding_optional b name =
if Binding.is_empty name then def_binding b else name;
(* unofficial theorem names *)
fun the_name_hint thm = the (AList.lookup (op =) (Thm.get_tags thm) Markup.nameN);
val has_name_hint = can the_name_hint;
val get_name_hint = the_default "??.unknown" o try the_name_hint;
fun put_name_hint name = untag_rule Markup.nameN #> tag_rule (Markup.nameN, name);
(* theorem kinds *)
val theoremK = "theorem";
val lemmaK = "lemma";
val corollaryK = "corollary";
fun legacy_get_kind thm = the_default "" (Properties.get (Thm.get_tags thm) Markup.kindN);
fun kind_rule k = tag_rule (Markup.kindN, k) o untag_rule Markup.kindN;
fun kind k = rule_attribute (K (k <> "" ? kind_rule k));
(* forked proofs *)
structure Proofs = Theory_Data
(
type T = thm list;
val empty = [];
fun extend _ = empty;
fun merge _ = empty;
);
fun register_proofs more_thms = Proofs.map (fn thms => fold cons more_thms thms);
val join_theory_proofs = Thm.join_proofs o rev o Proofs.get;
open Thm;
end;
structure Basic_Thm: BASIC_THM = Thm;
open Basic_Thm;