(* Title: HOL/Hilbert_Choice.thy
Author: Lawrence C Paulson, Tobias Nipkow
Author: Viorel Preoteasa (Results about complete distributive lattices)
Copyright 2001 University of Cambridge
*)
section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close>
theory Hilbert_Choice
imports Wellfounded
keywords "specification" :: thy_goal
begin
subsection \<open>Hilbert's epsilon\<close>
axiomatization Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
where someI: "P x \<Longrightarrow> P (Eps P)"
syntax (epsilon)
"_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a" ("(3\<some>_./ _)" [0, 10] 10)
syntax (input)
"_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a" ("(3@ _./ _)" [0, 10] 10)
syntax
"_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a" ("(3SOME _./ _)" [0, 10] 10)
translations
"SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"
print_translation \<open>
[(@{const_syntax Eps}, fn _ => fn [Abs abs] =>
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
definition inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
"inv_into A f = (\<lambda>x. SOME y. y \<in> A \<and> f y = x)"
lemma inv_into_def2: "inv_into A f x = (SOME y. y \<in> A \<and> f y = x)"
by(simp add: inv_into_def)
abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
"inv \<equiv> inv_into UNIV"
subsection \<open>Hilbert's Epsilon-operator\<close>
text \<open>
Easier to apply than \<open>someI\<close> if the witness comes from an
existential formula.
\<close>
lemma someI_ex [elim?]: "\<exists>x. P x \<Longrightarrow> P (SOME x. P x)"
apply (erule exE)
apply (erule someI)
done
text \<open>
Easier to apply than \<open>someI\<close> because the conclusion has only one
occurrence of @{term P}.
\<close>
lemma someI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"
by (blast intro: someI)
text \<open>
Easier to apply than \<open>someI2\<close> if the witness comes from an
existential formula.
\<close>
lemma someI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"
by (blast intro: someI2)
lemma someI2_bex: "\<exists>a\<in>A. P a \<Longrightarrow> (\<And>x. x \<in> A \<and> P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. x \<in> A \<and> P x)"
by (blast intro: someI2)
lemma some_equality [intro]: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x = a) \<Longrightarrow> (SOME x. P x) = a"
by (blast intro: someI2)
lemma some1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> (SOME x. P x) = a"
by blast
lemma some_eq_ex: "P (SOME x. P x) \<longleftrightarrow> (\<exists>x. P x)"
by (blast intro: someI)
lemma some_in_eq: "(SOME x. x \<in> A) \<in> A \<longleftrightarrow> A \<noteq> {}"
unfolding ex_in_conv[symmetric] by (rule some_eq_ex)
lemma some_eq_trivial [simp]: "(SOME y. y = x) = x"
by (rule some_equality) (rule refl)
lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x"
apply (rule some_equality)
apply (rule refl)
apply (erule sym)
done
subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close>
lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
by (fast elim: someI)
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"
by (fast elim: someI)
lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))"
by (fast elim: someI)
lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))"
by (fast elim: someI)
lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))"
by (fast elim: someI)
lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))"
by (fast elim: someI)
lemma dependent_nat_choice:
assumes 1: "\<exists>x. P 0 x"
and 2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y"
shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))"
proof (intro exI allI conjI)
fix n
define f where "f = rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)"
then have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))"
using someI_ex[OF 1] someI_ex[OF 2] by simp_all
then show "P n (f n)" "Q n (f n) (f (Suc n))"
by (induct n) auto
qed
subsection \<open>Function Inverse\<close>
lemma inv_def: "inv f = (\<lambda>y. SOME x. f x = y)"
by (simp add: inv_into_def)
lemma inv_into_into: "x \<in> f ` A \<Longrightarrow> inv_into A f x \<in> A"
by (simp add: inv_into_def) (fast intro: someI2)
lemma inv_identity [simp]: "inv (\<lambda>a. a) = (\<lambda>a. a)"
by (simp add: inv_def)
lemma inv_id [simp]: "inv id = id"
by (simp add: id_def)
lemma inv_into_f_f [simp]: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> inv_into A f (f x) = x"
by (simp add: inv_into_def inj_on_def) (blast intro: someI2)
lemma inv_f_f: "inj f \<Longrightarrow> inv f (f x) = x"
by simp
lemma f_inv_into_f: "y \<in> f`A \<Longrightarrow> f (inv_into A f y) = y"
by (simp add: inv_into_def) (fast intro: someI2)
lemma inv_into_f_eq: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> f x = y \<Longrightarrow> inv_into A f y = x"
by (erule subst) (fast intro: inv_into_f_f)
lemma inv_f_eq: "inj f \<Longrightarrow> f x = y \<Longrightarrow> inv f y = x"
by (simp add:inv_into_f_eq)
lemma inj_imp_inv_eq: "inj f \<Longrightarrow> \<forall>x. f (g x) = x \<Longrightarrow> inv f = g"
by (blast intro: inv_into_f_eq)
text \<open>But is it useful?\<close>
lemma inj_transfer:
assumes inj: "inj f"
and minor: "\<And>y. y \<in> range f \<Longrightarrow> P (inv f y)"
shows "P x"
proof -
have "f x \<in> range f" by auto
then have "P(inv f (f x))" by (rule minor)
then show "P x" by (simp add: inv_into_f_f [OF inj])
qed
lemma inj_iff: "inj f \<longleftrightarrow> inv f \<circ> f = id"
by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f)
lemma inv_o_cancel[simp]: "inj f \<Longrightarrow> inv f \<circ> f = id"
by (simp add: inj_iff)
lemma o_inv_o_cancel[simp]: "inj f \<Longrightarrow> g \<circ> inv f \<circ> f = g"
by (simp add: comp_assoc)
lemma inv_into_image_cancel[simp]: "inj_on f A \<Longrightarrow> S \<subseteq> A \<Longrightarrow> inv_into A f ` f ` S = S"
by (fastforce simp: image_def)
lemma inj_imp_surj_inv: "inj f \<Longrightarrow> surj (inv f)"
by (blast intro!: surjI inv_into_f_f)
lemma surj_f_inv_f: "surj f \<Longrightarrow> f (inv f y) = y"
by (simp add: f_inv_into_f)
lemma bij_inv_eq_iff: "bij p \<Longrightarrow> x = inv p y \<longleftrightarrow> p x = y"
using surj_f_inv_f[of p] by (auto simp add: bij_def)
lemma inv_into_injective:
assumes eq: "inv_into A f x = inv_into A f y"
and x: "x \<in> f`A"
and y: "y \<in> f`A"
shows "x = y"
proof -
from eq have "f (inv_into A f x) = f (inv_into A f y)"
by simp
with x y show ?thesis
by (simp add: f_inv_into_f)
qed
lemma inj_on_inv_into: "B \<subseteq> f`A \<Longrightarrow> inj_on (inv_into A f) B"
by (blast intro: inj_onI dest: inv_into_injective injD)
lemma bij_betw_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (inv_into A f) B A"
by (auto simp add: bij_betw_def inj_on_inv_into)
lemma surj_imp_inj_inv: "surj f \<Longrightarrow> inj (inv f)"
by (simp add: inj_on_inv_into)
lemma surj_iff: "surj f \<longleftrightarrow> f \<circ> inv f = id"
by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])
lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)"
by (simp add: o_def surj_iff fun_eq_iff)
lemma surj_imp_inv_eq: "surj f \<Longrightarrow> \<forall>x. g (f x) = x \<Longrightarrow> inv f = g"
apply (rule ext)
apply (drule_tac x = "inv f x" in spec)
apply (simp add: surj_f_inv_f)
done
lemma bij_imp_bij_inv: "bij f \<Longrightarrow> bij (inv f)"
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
lemma inv_equality: "(\<And>x. g (f x) = x) \<Longrightarrow> (\<And>y. f (g y) = y) \<Longrightarrow> inv f = g"
by (rule ext) (auto simp add: inv_into_def)
lemma inv_inv_eq: "bij f \<Longrightarrow> inv (inv f) = f"
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
text \<open>
\<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such
that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close>
that \<open>inv f\<close> could be any function at all, including the identity function.
If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv
(inv f) = f\<close> all fail.
\<close>
lemma inv_into_comp:
"inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow>
inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x"
apply (rule inv_into_f_eq)
apply (fast intro: comp_inj_on)
apply (simp add: inv_into_into)
apply (simp add: f_inv_into_f inv_into_into)
done
lemma o_inv_distrib: "bij f \<Longrightarrow> bij g \<Longrightarrow> inv (f \<circ> g) = inv g \<circ> inv f"
by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
lemma image_f_inv_f: "surj f \<Longrightarrow> f ` (inv f ` A) = A"
by (simp add: surj_f_inv_f image_comp comp_def)
lemma image_inv_f_f: "inj f \<Longrightarrow> inv f ` (f ` A) = A"
by simp
lemma bij_image_Collect_eq: "bij f \<Longrightarrow> f ` Collect P = {y. P (inv f y)}"
apply auto
apply (force simp add: bij_is_inj)
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
done
lemma bij_vimage_eq_inv_image: "bij f \<Longrightarrow> f -` A = inv f ` A"
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
done
lemma finite_fun_UNIVD1:
assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
and card: "card (UNIV :: 'b set) \<noteq> Suc 0"
shows "finite (UNIV :: 'a set)"
proof -
let ?UNIV_b = "UNIV :: 'b set"
from fin have "finite ?UNIV_b"
by (rule finite_fun_UNIVD2)
with card have "card ?UNIV_b \<ge> Suc (Suc 0)"
by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff)
then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))"
by simp
then obtain b1 b2 :: 'b where b1b2: "b1 \<noteq> b2"
by (auto simp: card_Suc_eq)
from fin have fin': "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))"
by (rule finite_imageI)
have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
proof (rule UNIV_eq_I)
fix x :: 'a
from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1"
by (simp add: inv_into_def)
then show "x \<in> range (\<lambda>f::'a \<Rightarrow> 'b. inv f b1)"
by blast
qed
with fin' show ?thesis
by simp
qed
text \<open>
Every infinite set contains a countable subset. More precisely we
show that a set \<open>S\<close> is infinite if and only if there exists an
injective function from the naturals into \<open>S\<close>.
The ``only if'' direction is harder because it requires the
construction of a sequence of pairwise different elements of an
infinite set \<open>S\<close>. The idea is to construct a sequence of
non-empty and infinite subsets of \<open>S\<close> obtained by successively
removing elements of \<open>S\<close>.
\<close>
lemma infinite_countable_subset:
assumes inf: "\<not> finite S"
shows "\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S"
\<comment> \<open>Courtesy of Stephan Merz\<close>
proof -
define Sseq where "Sseq = rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
define pick where "pick n = (SOME e. e \<in> Sseq n)" for n
have *: "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" for n
by (induct n) (auto simp: Sseq_def inf)
then have **: "\<And>n. pick n \<in> Sseq n"
unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex)
with * have "range pick \<subseteq> S" by auto
moreover have "pick n \<noteq> pick (n + Suc m)" for m n
proof -
have "pick n \<notin> Sseq (n + Suc m)"
by (induct m) (auto simp add: Sseq_def pick_def)
with ** show ?thesis by auto
qed
then have "inj pick"
by (intro linorder_injI) (auto simp add: less_iff_Suc_add)
ultimately show ?thesis by blast
qed
lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S)"
\<comment> \<open>Courtesy of Stephan Merz\<close>
using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto
lemma image_inv_into_cancel:
assumes surj: "f`A = A'"
and sub: "B' \<subseteq> A'"
shows "f `((inv_into A f)`B') = B'"
using assms
proof (auto simp: f_inv_into_f)
let ?f' = "inv_into A f"
fix a'
assume *: "a' \<in> B'"
with sub have "a' \<in> A'" by auto
with surj have "a' = f (?f' a')"
by (auto simp: f_inv_into_f)
with * show "a' \<in> f ` (?f' ` B')" by blast
qed
lemma inv_into_inv_into_eq:
assumes "bij_betw f A A'"
and a: "a \<in> A"
shows "inv_into A' (inv_into A f) a = f a"
proof -
let ?f' = "inv_into A f"
let ?f'' = "inv_into A' ?f'"
from assms have *: "bij_betw ?f' A' A"
by (auto simp: bij_betw_inv_into)
with a obtain a' where a': "a' \<in> A'" "?f' a' = a"
unfolding bij_betw_def by force
with a * have "?f'' a = a'"
by (auto simp: f_inv_into_f bij_betw_def)
moreover from assms a' have "f a = a'"
by (auto simp: bij_betw_def)
ultimately show "?f'' a = f a" by simp
qed
lemma inj_on_iff_surj:
assumes "A \<noteq> {}"
shows "(\<exists>f. inj_on f A \<and> f ` A \<subseteq> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)"
proof safe
fix f
assume inj: "inj_on f A" and incl: "f ` A \<subseteq> A'"
let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'"
let ?csi = "\<lambda>a. a \<in> A"
let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)"
have "?g ` A' = A"
proof
show "?g ` A' \<subseteq> A"
proof clarify
fix a'
assume *: "a' \<in> A'"
show "?g a' \<in> A"
proof (cases "a' \<in> f ` A")
case True
then obtain a where "?phi a' a" by blast
then have "?phi a' (SOME a. ?phi a' a)"
using someI[of "?phi a'" a] by blast
with True show ?thesis by auto
next
case False
with assms have "?csi (SOME a. ?csi a)"
using someI_ex[of ?csi] by blast
with False show ?thesis by auto
qed
qed
next
show "A \<subseteq> ?g ` A'"
proof -
have "?g (f a) = a \<and> f a \<in> A'" if a: "a \<in> A" for a
proof -
let ?b = "SOME aa. ?phi (f a) aa"
from a have "?phi (f a) a" by auto
then have *: "?phi (f a) ?b"
using someI[of "?phi(f a)" a] by blast
then have "?g (f a) = ?b" using a by auto
moreover from inj * a have "a = ?b"
by (auto simp add: inj_on_def)
ultimately have "?g(f a) = a" by simp
with incl a show ?thesis by auto
qed
then show ?thesis by force
qed
qed
then show "\<exists>g. g ` A' = A" by blast
next
fix g
let ?f = "inv_into A' g"
have "inj_on ?f (g ` A')"
by (auto simp: inj_on_inv_into)
moreover have "?f (g a') \<in> A'" if a': "a' \<in> A'" for a'
proof -
let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'"
from a' have "?phi a'" by auto
then have "?phi (SOME b'. ?phi b')"
using someI[of ?phi] by blast
then show ?thesis by (auto simp: inv_into_def)
qed
ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'"
by auto
qed
lemma Ex_inj_on_UNION_Sigma:
"\<exists>f. (inj_on f (\<Union>i \<in> I. A i) \<and> f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i))"
proof
let ?phi = "\<lambda>a i. i \<in> I \<and> a \<in> A i"
let ?sm = "\<lambda>a. SOME i. ?phi a i"
let ?f = "\<lambda>a. (?sm a, a)"
have "inj_on ?f (\<Union>i \<in> I. A i)"
by (auto simp: inj_on_def)
moreover
have "?sm a \<in> I \<and> a \<in> A(?sm a)" if "i \<in> I" and "a \<in> A i" for i a
using that someI[of "?phi a" i] by auto
then have "?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"
by auto
ultimately show "inj_on ?f (\<Union>i \<in> I. A i) \<and> ?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"
by auto
qed
lemma inv_unique_comp:
assumes fg: "f \<circ> g = id"
and gf: "g \<circ> f = id"
shows "inv f = g"
using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)
subsection \<open>Other Consequences of Hilbert's Epsilon\<close>
text \<open>Hilbert's Epsilon and the @{term split} Operator\<close>
text \<open>Looping simprule!\<close>
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))"
by simp
lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))"
by (simp add: split_def)
lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \<and> y = y') = (x, y)"
by blast
text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close>
lemma wf_iff_no_infinite_down_chain: "wf r \<longleftrightarrow> (\<nexists>f. \<forall>i. (f (Suc i), f i) \<in> r)"
(is "_ \<longleftrightarrow> \<not> ?ex")
proof
assume "wf r"
show "\<not> ?ex"
proof
assume ?ex
then obtain f where f: "(f (Suc i), f i) \<in> r" for i
by blast
from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q
by (auto simp: wf_eq_minimal)
let ?Q = "{w. \<exists>i. w = f i}"
fix n
have "f n \<in> ?Q" by blast
from minimal [OF this] obtain j where "(y, f j) \<in> r \<Longrightarrow> y \<notin> ?Q" for y by blast
with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp
then show False by blast
qed
next
assume "\<not> ?ex"
then show "wf r"
proof (rule contrapos_np)
assume "\<not> wf r"
then obtain Q x where x: "x \<in> Q" and rec: "z \<in> Q \<Longrightarrow> \<exists>y. (y, z) \<in> r \<and> y \<in> Q" for z
by (auto simp add: wf_eq_minimal)
obtain descend :: "nat \<Rightarrow> 'a"
where descend_0: "descend 0 = x"
and descend_Suc: "descend (Suc n) = (SOME y. y \<in> Q \<and> (y, descend n) \<in> r)" for n
by (rule that [of "rec_nat x (\<lambda>_ rec. (SOME y. y \<in> Q \<and> (y, rec) \<in> r))"]) simp_all
have descend_Q: "descend n \<in> Q" for n
proof (induct n)
case 0
with x show ?case by (simp only: descend_0)
next
case Suc
then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast)
qed
have "(descend (Suc i), descend i) \<in> r" for i
by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast)
then show "\<exists>f. \<forall>i. (f (Suc i), f i) \<in> r" by blast
qed
qed
lemma wf_no_infinite_down_chainE:
assumes "wf r"
obtains k where "(f (Suc k), f k) \<notin> r"
using assms wf_iff_no_infinite_down_chain[of r] by blast
text \<open>A dynamically-scoped fact for TFL\<close>
lemma tfl_some: "\<forall>P x. P x \<longrightarrow> P (Eps P)"
by (blast intro: someI)
subsection \<open>An aside: bounded accessible part\<close>
text \<open>Finite monotone eventually stable sequences\<close>
lemma finite_mono_remains_stable_implies_strict_prefix:
fixes f :: "nat \<Rightarrow> 'a::order"
assumes S: "finite (range f)" "mono f"
and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))"
shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)"
using assms
proof -
have "\<exists>n. f n = f (Suc n)"
proof (rule ccontr)
assume "\<not> ?thesis"
then have "\<And>n. f n \<noteq> f (Suc n)" by auto
with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)"
by (auto simp: le_less mono_iff_le_Suc)
with lift_Suc_mono_less_iff[of f] have *: "\<And>n m. n < m \<Longrightarrow> f n < f m"
by auto
have "inj f"
proof (intro injI)
fix x y
assume "f x = f y"
then show "x = y"
by (cases x y rule: linorder_cases) (auto dest: *)
qed
with \<open>finite (range f)\<close> have "finite (UNIV::nat set)"
by (rule finite_imageD)
then show False by simp
qed
then obtain n where n: "f n = f (Suc n)" ..
define N where "N = (LEAST n. f n = f (Suc n))"
have N: "f N = f (Suc N)"
unfolding N_def using n by (rule LeastI)
show ?thesis
proof (intro exI[of _ N] conjI allI impI)
fix n
assume "N \<le> n"
then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N"
proof (induct rule: dec_induct)
case base
then show ?case by simp
next
case (step n)
then show ?case
using eq [rule_format, of "n - 1"] N
by (cases n) (auto simp add: le_Suc_eq)
qed
from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto
next
fix n m :: nat
assume "m < n" "n \<le> N"
then show "f m < f n"
proof (induct rule: less_Suc_induct)
case (1 i)
then have "i < N" by simp
then have "f i \<noteq> f (Suc i)"
unfolding N_def by (rule not_less_Least)
with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le)
next
case 2
then show ?case by simp
qed
qed
qed
lemma finite_mono_strict_prefix_implies_finite_fixpoint:
fixes f :: "nat \<Rightarrow> 'a set"
assumes S: "\<And>i. f i \<subseteq> S" "finite S"
and ex: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)"
shows "f (card S) = (\<Union>n. f n)"
proof -
from ex obtain N where inj: "\<And>n m. n \<le> N \<Longrightarrow> m \<le> N \<Longrightarrow> m < n \<Longrightarrow> f m \<subset> f n"
and eq: "\<forall>n\<ge>N. f N = f n"
by atomize auto
have "i \<le> N \<Longrightarrow> i \<le> card (f i)" for i
proof (induct i)
case 0
then show ?case by simp
next
case (Suc i)
with inj [of "Suc i" i] have "(f i) \<subset> (f (Suc i))" by auto
moreover have "finite (f (Suc i))" using S by (rule finite_subset)
ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono)
with Suc inj show ?case by auto
qed
then have "N \<le> card (f N)" by simp
also have "\<dots> \<le> card S" using S by (intro card_mono)
finally have "f (card S) = f N" using eq by auto
then show ?thesis
using eq inj [of N]
apply auto
apply (case_tac "n < N")
apply (auto simp: not_less)
done
qed
subsection \<open>More on injections, bijections, and inverses\<close>
locale bijection =
fixes f :: "'a \<Rightarrow> 'a"
assumes bij: "bij f"
begin
lemma bij_inv: "bij (inv f)"
using bij by (rule bij_imp_bij_inv)
lemma surj [simp]: "surj f"
using bij by (rule bij_is_surj)
lemma inj: "inj f"
using bij by (rule bij_is_inj)
lemma surj_inv [simp]: "surj (inv f)"
using inj by (rule inj_imp_surj_inv)
lemma inj_inv: "inj (inv f)"
using surj by (rule surj_imp_inj_inv)
lemma eqI: "f a = f b \<Longrightarrow> a = b"
using inj by (rule injD)
lemma eq_iff [simp]: "f a = f b \<longleftrightarrow> a = b"
by (auto intro: eqI)
lemma eq_invI: "inv f a = inv f b \<Longrightarrow> a = b"
using inj_inv by (rule injD)
lemma eq_inv_iff [simp]: "inv f a = inv f b \<longleftrightarrow> a = b"
by (auto intro: eq_invI)
lemma inv_left [simp]: "inv f (f a) = a"
using inj by (simp add: inv_f_eq)
lemma inv_comp_left [simp]: "inv f \<circ> f = id"
by (simp add: fun_eq_iff)
lemma inv_right [simp]: "f (inv f a) = a"
using surj by (simp add: surj_f_inv_f)
lemma inv_comp_right [simp]: "f \<circ> inv f = id"
by (simp add: fun_eq_iff)
lemma inv_left_eq_iff [simp]: "inv f a = b \<longleftrightarrow> f b = a"
by auto
lemma inv_right_eq_iff [simp]: "b = inv f a \<longleftrightarrow> f b = a"
by auto
end
lemma infinite_imp_bij_betw:
assumes infinite: "\<not> finite A"
shows "\<exists>h. bij_betw h A (A - {a})"
proof (cases "a \<in> A")
case False
then have "A - {a} = A" by blast
then show ?thesis
using bij_betw_id[of A] by auto
next
case True
with infinite have "\<not> finite (A - {a})" by auto
with infinite_iff_countable_subset[of "A - {a}"]
obtain f :: "nat \<Rightarrow> 'a" where 1: "inj f" and 2: "f ` UNIV \<subseteq> A - {a}" by blast
define g where "g n = (if n = 0 then a else f (Suc n))" for n
define A' where "A' = g ` UNIV"
have *: "\<forall>y. f y \<noteq> a" using 2 by blast
have 3: "inj_on g UNIV \<and> g ` UNIV \<subseteq> A \<and> a \<in> g ` UNIV"
apply (auto simp add: True g_def [abs_def])
apply (unfold inj_on_def)
apply (intro ballI impI)
apply (case_tac "x = 0")
apply (auto simp add: 2)
proof -
fix y
assume "a = (if y = 0 then a else f (Suc y))"
then show "y = 0" by (cases "y = 0") (use * in auto)
next
fix x y
assume "f (Suc x) = (if y = 0 then a else f (Suc y))"
with 1 * show "x = y" by (cases "y = 0") (auto simp: inj_on_def)
next
fix n
from 2 show "f (Suc n) \<in> A" by blast
qed
then have 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<subseteq> A"
using inj_on_imp_bij_betw[of g] by (auto simp: A'_def)
then have 5: "bij_betw (inv g) A' UNIV"
by (auto simp add: bij_betw_inv_into)
from 3 obtain n where n: "g n = a" by auto
have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>)
define v where "v m = (if m < n then m else Suc m)" for m
have 7: "bij_betw v UNIV (UNIV - {n})"
proof (unfold bij_betw_def inj_on_def, intro conjI, clarify)
fix m1 m2
assume "v m1 = v m2"
then show "m1 = m2"
apply (cases "m1 < n")
apply (cases "m2 < n")
apply (auto simp: inj_on_def v_def [abs_def])
apply (cases "m2 < n")
apply auto
done
next
show "v ` UNIV = UNIV - {n}"
proof (auto simp: v_def [abs_def])
fix m
assume "m \<noteq> n"
assume *: "m \<notin> Suc ` {m'. \<not> m' < n}"
have False if "n \<le> m"
proof -
from \<open>m \<noteq> n\<close> that have **: "Suc n \<le> m" by auto
from Suc_le_D [OF this] obtain m' where m': "m = Suc m'" ..
with ** have "n \<le> m'" by auto
with m' * show ?thesis by auto
qed
then show "m < n" by force
qed
qed
define h' where "h' = g \<circ> v \<circ> (inv g)"
with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
by (auto simp add: bij_betw_trans)
define h where "h b = (if b \<in> A' then h' b else b)" for b
then have "\<forall>b \<in> A'. h b = h' b" by simp
with 8 have "bij_betw h A' (A' - {a})"
using bij_betw_cong[of A' h] by auto
moreover
have "\<forall>b \<in> A - A'. h b = b" by (auto simp: h_def)
then have "bij_betw h (A - A') (A - A')"
using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto
moreover
from 4 have "(A' \<inter> (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
((A' - {a}) \<inter> (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
by blast
ultimately have "bij_betw h A (A - {a})"
using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
then show ?thesis by blast
qed
lemma infinite_imp_bij_betw2:
assumes "\<not> finite A"
shows "\<exists>h. bij_betw h A (A \<union> {a})"
proof (cases "a \<in> A")
case True
then have "A \<union> {a} = A" by blast
then show ?thesis using bij_betw_id[of A] by auto
next
case False
let ?A' = "A \<union> {a}"
from False have "A = ?A' - {a}" by blast
moreover from assms have "\<not> finite ?A'" by auto
ultimately obtain f where "bij_betw f ?A' A"
using infinite_imp_bij_betw[of ?A' a] by auto
then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into)
then show ?thesis by auto
qed
lemma bij_betw_inv_into_left: "bij_betw f A A' \<Longrightarrow> a \<in> A \<Longrightarrow> inv_into A f (f a) = a"
unfolding bij_betw_def by clarify (rule inv_into_f_f)
lemma bij_betw_inv_into_right: "bij_betw f A A' \<Longrightarrow> a' \<in> A' \<Longrightarrow> f (inv_into A f a') = a'"
unfolding bij_betw_def using f_inv_into_f by force
lemma bij_betw_inv_into_subset:
"bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw (inv_into A f) B' B"
by (auto simp: bij_betw_def intro: inj_on_inv_into)
subsection \<open>Specification package -- Hilbertized version\<close>
lemma exE_some: "Ex P \<Longrightarrow> c \<equiv> Eps P \<Longrightarrow> P c"
by (simp only: someI_ex)
ML_file "Tools/choice_specification.ML"
subsection \<open>Complete Distributive Lattices -- Properties depending on Hilbert Choice\<close>
context complete_distrib_lattice
begin
lemma Sup_Inf: "Sup (Inf ` A) = Inf (Sup ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
proof (rule antisym)
show "SUPREMUM A Inf \<le> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Sup"
apply (rule Sup_least, rule INF_greatest)
using Inf_lower2 Sup_upper by auto
next
show "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Sup \<le> SUPREMUM A Inf"
proof (simp add: Inf_Sup, rule SUP_least, simp, safe)
fix f
assume "\<forall>Y. (\<exists>f. Y = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<longrightarrow> f Y \<in> Y"
from this have B: "\<And> F . (\<forall> Y \<in> A . F Y \<in> Y) \<Longrightarrow> \<exists> Z \<in> A . f (F ` A) = F Z"
by auto
show "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> SUPREMUM A Inf"
proof (cases "\<exists> Z \<in> A . INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> Inf Z")
case True
from this obtain Z where [simp]: "Z \<in> A" and A: "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> Inf Z"
by blast
have B: "... \<le> SUPREMUM A Inf"
by (simp add: SUP_upper)
from A and B show ?thesis
by simp
next
case False
from this have X: "\<And> Z . Z \<in> A \<Longrightarrow> \<exists> x . x \<in> Z \<and> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> x"
using Inf_greatest by blast
define F where "F = (\<lambda> Z . SOME x . x \<in> Z \<and> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> x)"
have C: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
using X by (simp add: F_def, rule someI2_ex, auto)
have E: "\<And> Y . Y \<in> A \<Longrightarrow> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> F Y"
using X by (simp add: F_def, rule someI2_ex, auto)
from C and B obtain Z where D: "Z \<in> A " and Y: "f (F ` A) = F Z"
by blast
from E and D have W: "\<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> F Z"
by simp
have "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> f (F ` A)"
apply (rule INF_lower)
using C by blast
from this and W and Y show ?thesis
by simp
qed
qed
qed
lemma dual_complete_distrib_lattice:
"class.complete_distrib_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>"
apply (rule class.complete_distrib_lattice.intro)
apply (fact dual_complete_lattice)
by (simp add: class.complete_distrib_lattice_axioms_def Sup_Inf)
lemma sup_Inf: "a \<squnion> Inf B = (INF b:B. a \<squnion> b)"
proof (rule antisym)
show "a \<squnion> Inf B \<le> (INF b:B. a \<squnion> b)"
apply (rule INF_greatest)
using Inf_lower sup.mono by fastforce
next
have "(INF b:B. a \<squnion> b) \<le> INFIMUM {{f {a}, f B} |f. f {a} = a \<and> f B \<in> B} Sup"
by (rule INF_greatest, auto simp add: INF_lower)
also have "... = SUPREMUM {{a}, B} Inf"
by (unfold Sup_Inf, simp)
finally show "(INF b:B. a \<squnion> b) \<le> a \<squnion> Inf B"
by simp
qed
lemma inf_Sup: "a \<sqinter> Sup B = (SUP b:B. a \<sqinter> b)"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.sup_Inf)
lemma INF_SUP: "(INF y. SUP x. ((P x y)::'a)) = (SUP x. INF y. P (x y) y)"
proof (rule antisym)
show "(SUP x. INF y. P (x y) y) \<le> (INF y. SUP x. P x y)"
by (rule SUP_least, rule INF_greatest, rule SUP_upper2, simp_all, rule INF_lower2, simp, blast)
next
have "(INF y. SUP x. ((P x y))) \<le> Inf (Sup ` {{P x y | x . True} | y . True })" (is "?A \<le> ?B")
proof (rule INF_greatest, clarsimp)
fix y
have "?A \<le> (SUP x. P x y)"
by (rule INF_lower, simp)
also have "... \<le> Sup {uu. \<exists>x. uu = P x y}"
by (simp add: full_SetCompr_eq)
finally show "?A \<le> Sup {uu. \<exists>x. uu = P x y}"
by simp
qed
also have "... \<le> (SUP x. INF y. P (x y) y)"
proof (subst Inf_Sup, rule SUP_least, clarsimp)
fix f
assume A: "\<forall>Y. (\<exists>y. Y = {uu. \<exists>x. uu = P x y}) \<longrightarrow> f Y \<in> Y"
have "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> (INF y. P ((\<lambda> y. SOME x . f ({P x y | x. True}) = P x y) y) y)"
proof (rule INF_greatest, clarsimp)
fix y
have "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> f {uu. \<exists>x. uu = P x y}"
by (rule INF_lower, blast)
also have "... \<le> P (SOME x. f {uu . \<exists>x. uu = P x y} = P x y) y"
apply (rule someI2_ex)
using A by auto
finally show "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> P (SOME x. f {uu . \<exists>x. uu = P x y} = P x y) y"
by simp
qed
also have "... \<le> (SUP x. INF y. P (x y) y)"
by (rule SUP_upper, simp)
finally show "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> (SUP x. INF y. P (x y) y)"
by simp
qed
finally show "(INF y. SUP x. P x y) \<le> (SUP x. INF y. P (x y) y)"
by simp
qed
lemma INF_SUP_set: "(INF x:A. SUP a:x. (g a)) = (SUP x:{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. INF a:x. g a)"
proof (rule antisym)
have [simp]: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> (\<Sqinter>x\<in>A. g (f x)) \<le> g (f xa)"
by (rule INF_lower2, blast+)
have B: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> f xa \<in> xa"
by blast
have A: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> (\<Sqinter>x\<in>A. g (f x)) \<le> SUPREMUM xa g"
by (rule SUP_upper2, rule B, simp_all, simp)
show "(\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a) \<le> (\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a)"
apply (rule SUP_least, simp, safe, rule INF_greatest, simp)
by (rule A)
next
show "(\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a)"
proof (cases "{} \<in> A")
case True
then show ?thesis
by (rule INF_lower2, simp_all)
next
case False
have [simp]: "\<And>x xa xb. xb \<in> A \<Longrightarrow> x xb \<in> xb \<Longrightarrow> (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> g (x xb)"
by (rule INF_lower2, auto)
have [simp]: " \<And>x xa y. y \<in> A \<Longrightarrow> x y \<notin> y \<Longrightarrow> (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> g (SOME x. x \<in> y)"
by (rule INF_lower2, auto)
have [simp]: "\<And>x. (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>x\<in>x. g x)"
proof -
fix x
define F where "F = (\<lambda> (y::'b set) . if x y \<in> y then x y else (SOME x . x \<in>y))"
have B: "(\<forall>Y\<in>A. F Y \<in> Y)"
using False some_in_eq F_def by auto
have A: "F ` A \<in> {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}"
using B by blast
show "(\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>x\<in>x. g x)"
using A apply (rule SUP_upper2)
by (simp add: F_def, rule INF_greatest, auto)
qed
{fix x
have "(\<Sqinter>x\<in>A. \<Squnion>x\<in>x. g x) \<le> (\<Squnion>xa. if x \<in> A then if xa \<in> x then g xa else \<bottom> else \<top>)"
proof (cases "x \<in> A")
case True
then show ?thesis
apply (rule INF_lower2, simp_all)
by (rule SUP_least, rule SUP_upper2, auto)
next
case False
then show ?thesis by simp
qed
}
from this have "(\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a) \<le> (\<Sqinter>x. \<Squnion>xa. if x \<in> A then if xa \<in> x then g xa else \<bottom> else \<top>)"
by (rule INF_greatest)
also have "... = (\<Squnion>x. \<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>)"
by (simp add: INF_SUP)
also have "... \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a)"
by (rule SUP_least, simp)
finally show ?thesis by simp
qed
qed
lemma SUP_INF: "(SUP y. INF x. ((P x y)::'a)) = (INF x. SUP y. P (x y) y)"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.INF_SUP)
lemma SUP_INF_set: "(SUP x:A. INF a:x. (g a)) = (INF x:{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. SUP a:x. g a)"
using dual_complete_distrib_lattice
by (rule complete_distrib_lattice.INF_SUP_set)
end
(*properties of the former complete_distrib_lattice*)
context complete_distrib_lattice
begin
lemma sup_INF: "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
by (simp add: sup_Inf)
lemma inf_SUP: "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
by (simp add: inf_Sup)
lemma Inf_sup: "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
by (simp add: sup_Inf sup_commute)
lemma Sup_inf: "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
by (simp add: inf_Sup inf_commute)
lemma INF_sup: "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
by (simp add: sup_INF sup_commute)
lemma SUP_inf: "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
by (simp add: inf_SUP inf_commute)
lemma Inf_sup_eq_top_iff: "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
by (simp only: Inf_sup INF_top_conv)
lemma Sup_inf_eq_bot_iff: "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
by (simp only: Sup_inf SUP_bot_conv)
lemma INF_sup_distrib2: "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
by (subst INF_commute) (simp add: sup_INF INF_sup)
lemma SUP_inf_distrib2: "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
end
context complete_boolean_algebra
begin
lemma dual_complete_boolean_algebra:
"class.complete_boolean_algebra Sup Inf sup (\<ge>) (>) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
by (rule class.complete_boolean_algebra.intro,
rule dual_complete_distrib_lattice,
rule dual_boolean_algebra)
end
instantiation "set" :: (type) complete_distrib_lattice
begin
instance proof (standard, clarsimp)
fix A :: "(('a set) set) set"
fix x::'a
define F where "F = (\<lambda> Y . (SOME X . (Y \<in> A \<and> X \<in> Y \<and> x \<in> X)))"
assume A: "\<forall>xa\<in>A. \<exists>X\<in>xa. x \<in> X"
from this have B: " (\<forall>xa \<in> F ` A. x \<in> xa)"
apply (safe, simp add: F_def)
by (rule someI2_ex, auto)
have C: "(\<forall>Y\<in>A. F Y \<in> Y)"
apply (simp add: F_def, safe)
apply (rule someI2_ex)
using A by auto
have "(\<exists>f. F ` A = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y))"
using C by blast
from B and this show "\<exists>X. (\<exists>f. X = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<and> (\<forall>xa\<in>X. x \<in> xa)"
by auto
qed
end
instance "set" :: (type) complete_boolean_algebra ..
instantiation "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice
begin
instance by standard (simp add: le_fun_def INF_SUP_set)
end
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
context complete_linorder
begin
subclass complete_distrib_lattice
proof (standard, rule ccontr)
fix A
assume "\<not> INFIMUM A Sup \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
from this have C: "INFIMUM A Sup > SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
using local.not_le by blast
show "False"
proof (cases "\<exists> z . INFIMUM A Sup > z \<and> z > SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf")
case True
from this obtain z where A: "z < INFIMUM A Sup" and X: "SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < z"
by blast
from A have "\<And> Y . Y \<in> A \<Longrightarrow> z < Sup Y"
by (simp add: less_INF_D)
from this have B: "\<And> Y . Y \<in> A \<Longrightarrow> \<exists> k \<in>Y . z < k"
using local.less_Sup_iff by blast
define F where "F = (\<lambda> Y . SOME k . k \<in> Y \<and> z < k)"
have D: "\<And> Y . Y \<in> A \<Longrightarrow> z < F Y"
using B apply (simp add: F_def)
by (rule someI2_ex, auto)
have E: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
using B apply (simp add: F_def)
by (rule someI2_ex, auto)
have "z \<le> Inf (F ` A)"
by (simp add: D local.INF_greatest local.order.strict_implies_order)
also have "... \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
apply (rule SUP_upper, safe)
using E by blast
finally have "z \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
by simp
from X and this show ?thesis
using local.not_less by blast
next
case False
from this have A: "\<And> z . INFIMUM A Sup \<le> z \<or> z \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
using local.le_less_linear by blast
from C have "\<And> Y . Y \<in> A \<Longrightarrow> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < Sup Y"
by (simp add: less_INF_D)
from this have B: "\<And> Y . Y \<in> A \<Longrightarrow> \<exists> k \<in>Y . SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < k"
using local.less_Sup_iff by blast
define F where "F = (\<lambda> Y . SOME k . k \<in> Y \<and> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < k)"
have D: "\<And> Y . Y \<in> A \<Longrightarrow> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < F Y"
using B apply (simp add: F_def)
by (rule someI2_ex, auto)
have E: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
using B apply (simp add: F_def)
by (rule someI2_ex, auto)
have "\<And> Y . Y \<in> A \<Longrightarrow> INFIMUM A Sup \<le> F Y"
using D False local.leI by blast
from this have "INFIMUM A Sup \<le> Inf (F ` A)"
by (simp add: local.INF_greatest)
also have "Inf (F ` A) \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
apply (rule SUP_upper, safe)
using E by blast
finally have "INFIMUM A Sup \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
by simp
from C and this show ?thesis
using not_less by blast
qed
qed
end
end