<!-- $Id$ -->
<HTML><HEAD><TITLE>HOL/ex/README</TITLE></HEAD><BODY>
<H2>ex--Miscellaneous Examples</H2>
<P>This directory presents a number of small examples, illustrating various
features of Isabelle/HOL.
<UL>
<LI><A HREF="Classical.thy"><KBD>Classical</KBD></A> demonstrates the power
of Isabelle's classical reasoner.
<LI>Files <A HREF="mesontest.ML"><KBD>mesontest.ML</KBD></A> and
<A HREF="mesontest2.ML"><KBD>mesontest2.ML</KBD></A> present an
implementation of the Model Elimination (ME) proof procedure, which is even
more powerful than the classical reasoner but not generic.
<LI><A HREF="InSort.thy"><KBD>InSort</KBD></A> and <A HREF="Qsort.thy"><KBD>Qsort</KBD></A> are correctness proofs for sorting
functions.
<LI><A HREF="Primrec.thy"><KBD>Primrec</KBD></A> proves that Ackermann's
function is not primitive recursive.
<LI><A HREF="Tarski.thy"><KBD>Tarski</KBD></A> is a proof of Tarski's fixedpoint theorem: the full
version, which states that the fixedpoints of a complete lattice themselves
form a complete lattice. The example demonstrates first-class reasoning about theories.
<LI><A HREF="NatSum.thy"><KBD>NatSum</KBD></A> demonstrates the power of permutative rewriting.
Well-known identities about summations are proved using just induction and
rewriting.
<LI><A HREF="MT.thy"><KBD>MT</KBD></A> is a preliminary version of Jacob Frost's coinduction
example. The full version is on the directory <KBD>ZF/Coind</KBD>.
</UL>
<HR>
<P>Last modified on $Date$
<ADDRESS>
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
</ADDRESS>
</BODY></HTML>