Calls Blast_tac. Tidied some proofs
(* Title: HOLCF/Discrete1.ML
ID: $Id$
Author: Tobias Nipkow
Copyright 1997 TUM
Proves that 'a discr is a cpo
*)
goalw thy [po_def,less_discr_def] "((x::('a::term)discr) << y) = (x=y)";
br refl 1;
qed "discr_less_eq";
AddIffs [discr_less_eq];
goalw thy [is_chain]
"!!S::nat=>('a::term)discr. is_chain S ==> S i = S 0";
by(nat_ind_tac "i" 1);
br refl 1;
be subst 1;
br sym 1;
by(Fast_tac 1);
qed "discr_chain0";
goal thy
"!!S::nat=>('a::term)discr. is_chain(S) ==> range(S) = {S 0}";
by(fast_tac (!claset addEs [discr_chain0]) 1);
qed "discr_chain_range0";
Addsimps [discr_chain_range0];
goalw thy [is_lub,is_ub]
"!!S. is_chain S ==> ? x::('a::term)discr. range(S) <<| x";
by(Asm_simp_tac 1);
qed "discr_cpo";