(* Title: HOL/Tools/Sledgehammer/sledgehammer_isar_proof.ML
Author: Jasmin Blanchette, TU Muenchen
Author: Steffen Juilf Smolka, TU Muenchen
Basic data structures for representing and basic methods
for dealing with Isar proof texts.
*)
signature SLEDGEHAMMER_ISAR_PROOF =
sig
type proof_method = Sledgehammer_Proof_Methods.proof_method
type label = string * int
type facts = label list * string list (* local and global facts *)
datatype isar_qualifier = Show | Then
datatype isar_proof =
Proof of (string * typ) list * (label * term) list * isar_step list
and isar_step =
Let of term * term |
Prove of isar_qualifier list * (string * typ) list * label * term * isar_proof list
* facts * proof_method list * string
val no_label : label
val label_ord : label * label -> order
val string_of_label : label -> string
val sort_facts : facts -> facts
val steps_of_isar_proof : isar_proof -> isar_step list
val label_of_isar_step : isar_step -> label option
val facts_of_isar_step : isar_step -> facts
val proof_methods_of_isar_step : isar_step -> proof_method list
val fold_isar_steps : (isar_step -> 'a -> 'a) -> isar_step list -> 'a -> 'a
val map_isar_steps : (isar_step -> isar_step) -> isar_proof -> isar_proof
val add_isar_steps : isar_step list -> int -> int
structure Canonical_Label_Tab : TABLE
val canonical_label_ord : (label * label) -> order
val comment_isar_proof : (label -> proof_method list -> string) -> isar_proof -> isar_proof
val chain_isar_proof : isar_proof -> isar_proof
val kill_useless_labels_in_isar_proof : isar_proof -> isar_proof
val relabel_isar_proof_canonically : isar_proof -> isar_proof
val relabel_isar_proof_nicely : isar_proof -> isar_proof
val rationalize_obtains_in_isar_proofs : Proof.context -> isar_proof -> isar_proof
val string_of_isar_proof : Proof.context -> int -> int -> isar_proof -> string
end;
structure Sledgehammer_Isar_Proof : SLEDGEHAMMER_ISAR_PROOF =
struct
open ATP_Util
open ATP_Proof
open ATP_Problem_Generate
open ATP_Proof_Reconstruct
open Sledgehammer_Util
open Sledgehammer_Proof_Methods
open Sledgehammer_Isar_Annotate
type label = string * int
type facts = label list * string list (* local and global facts *)
datatype isar_qualifier = Show | Then
datatype isar_proof =
Proof of (string * typ) list * (label * term) list * isar_step list
and isar_step =
Let of term * term |
Prove of isar_qualifier list * (string * typ) list * label * term * isar_proof list
* facts * proof_method list * string
val no_label = ("", ~1)
(* cf. "label_ord" below *)
val assume_prefix = "a"
val have_prefix = "f"
fun label_ord ((s1, i1), (s2, i2)) =
(case int_ord (pairself String.size (s1, s2)) of
EQUAL =>
(case string_ord (s1, s2) of
EQUAL => int_ord (i1, i2)
| ord => ord (* "assume" before "have" *))
| ord => ord)
fun string_of_label (s, num) = s ^ string_of_int num
(* Put the nearest local label first, since it's the most likely to be replaced by a "hence".
(Some preplaying proof methods, e.g. "blast", react poorly to fact reorderings.) *)
fun sort_facts (lfs, gfs) = (sort (label_ord o swap) lfs, sort string_ord gfs)
fun steps_of_isar_proof (Proof (_, _, steps)) = steps
fun label_of_isar_step (Prove (_, _, l, _, _, _, _, _)) = SOME l
| label_of_isar_step _ = NONE
fun subproofs_of_isar_step (Prove (_, _, _, _, subs, _, _, _)) = subs
| subproofs_of_isar_step _ = []
fun facts_of_isar_step (Prove (_, _, _, _, _, facts, _, _)) = facts
| facts_of_isar_step _ = ([], [])
fun proof_methods_of_isar_step (Prove (_, _, _, _, _, _, meths, _)) = meths
| proof_methods_of_isar_step _ = []
fun fold_isar_step f step =
fold (steps_of_isar_proof #> fold_isar_steps f) (subproofs_of_isar_step step) #> f step
and fold_isar_steps f = fold (fold_isar_step f)
fun map_isar_steps f =
let
fun map_proof (Proof (fix, assms, steps)) = Proof (fix, assms, map map_step steps)
and map_step (step as Let _) = f step
| map_step (Prove (qs, xs, l, t, subs, facts, meths, comment)) =
f (Prove (qs, xs, l, t, map map_proof subs, facts, meths, comment))
in map_proof end
val add_isar_steps = fold_isar_steps (fn Prove _ => Integer.add 1 | _ => I)
(* canonical proof labels: 1, 2, 3, ... in post traversal order *)
fun canonical_label_ord (((_, i1), (_, i2)) : label * label) = int_ord (i1, i2)
structure Canonical_Label_Tab = Table(
type key = label
val ord = canonical_label_ord)
fun comment_isar_step comment_of (Prove (qs, xs, l, t, subs, facts, meths, _)) =
Prove (qs, xs, l, t, subs, facts, meths, comment_of l meths)
| comment_isar_step _ step = step
fun comment_isar_proof comment_of = map_isar_steps (comment_isar_step comment_of)
fun chain_qs_lfs NONE lfs = ([], lfs)
| chain_qs_lfs (SOME l0) lfs =
if member (op =) lfs l0 then ([Then], remove (op =) l0 lfs) else ([], lfs)
fun chain_isar_step lbl (Prove (qs, xs, l, t, subs, (lfs, gfs), meths, comment)) =
let val (qs', lfs) = chain_qs_lfs lbl lfs in
Prove (qs' @ qs, xs, l, t, map chain_isar_proof subs, (lfs, gfs), meths, comment)
end
| chain_isar_step _ step = step
and chain_isar_steps _ [] = []
| chain_isar_steps prev (i :: is) =
chain_isar_step prev i :: chain_isar_steps (label_of_isar_step i) is
and chain_isar_proof (Proof (fix, assms, steps)) =
Proof (fix, assms, chain_isar_steps (try (List.last #> fst) assms) steps)
fun kill_useless_labels_in_isar_proof proof =
let
val used_ls =
fold_isar_steps (facts_of_isar_step #> fst #> union (op =)) (steps_of_isar_proof proof) []
fun kill_label l = if member (op =) used_ls l then l else no_label
fun kill_step (Prove (qs, xs, l, t, subs, facts, meths, comment)) =
Prove (qs, xs, kill_label l, t, map kill_proof subs, facts, meths, comment)
| kill_step step = step
and kill_proof (Proof (fix, assms, steps)) =
Proof (fix, map (apfst kill_label) assms, map kill_step steps)
in
kill_proof proof
end
fun relabel_isar_proof_canonically proof =
let
fun next_label l (next, subst) =
let val l' = ("", next) in (l', (next + 1, (l, l') :: subst)) end
fun relabel_step (Prove (qs, fix, l, t, subs, (lfs, gfs), meths, comment))
(accum as (_, subst)) =
let
val lfs' = maps (the_list o AList.lookup (op =) subst) lfs
val ((subs', l'), accum') = accum
|> fold_map relabel_proof subs
||>> next_label l
in
(Prove (qs, fix, l', t, subs', (lfs', gfs), meths, comment), accum')
end
| relabel_step step accum = (step, accum)
and relabel_proof (Proof (fix, assms, steps)) =
fold_map (fn (l, t) => next_label l #> apfst (rpair t)) assms
##>> fold_map relabel_step steps
#>> (fn (assms, steps) => Proof (fix, assms, steps))
in
fst (relabel_proof proof (0, []))
end
val relabel_isar_proof_nicely =
let
fun next_label depth prefix l (accum as (next, subst)) =
if l = no_label then
(l, accum)
else
let val l' = (replicate_string (depth + 1) prefix, next) in
(l', (next + 1, (l, l') :: subst))
end
fun relabel_step depth (Prove (qs, xs, l, t, subs, (lfs, gfs), meths, comment))
(accum as (_, subst)) =
let
val lfs' = maps (the_list o AList.lookup (op =) subst) lfs
val (l', accum' as (_, subst')) = next_label depth have_prefix l accum
val subs' = map (relabel_proof subst' (depth + 1)) subs
in
(Prove (qs, xs, l', t, subs', (lfs', gfs), meths, comment), accum')
end
| relabel_step _ step accum = (step, accum)
and relabel_proof subst depth (Proof (fix, assms, steps)) =
(1, subst)
|> fold_map (fn (l, t) => next_label depth assume_prefix l #> apfst (rpair t)) assms
||>> fold_map (relabel_step depth) steps
|> (fn ((assms, steps), _) => Proof (fix, assms, steps))
in
relabel_proof [] 0
end
fun stutter_single_letter s = String.extract (s, 0, SOME 1) ^ s
fun rationalize_obtains_in_isar_proofs ctxt =
let
fun rename_obtains xs (subst, ctxt) =
let
val Ts = map snd xs
val new_names0 = map (stutter_single_letter o var_name_of_typ o body_type) Ts
val (new_names, ctxt') = Variable.variant_fixes new_names0 ctxt
val ys = map2 pair new_names Ts
in
(ys, ((map Free xs ~~ map Free ys) @ subst, ctxt'))
end
fun rationalize_step (Prove (qs, xs, l, t, subs, facts, meths, comment)) subst_ctxt =
let
val (xs', subst_ctxt' as (subst', _)) = rename_obtains xs subst_ctxt
val t' = subst_atomic subst' t
val subs' = map (rationalize_proof subst_ctxt') subs
in
(Prove (qs, xs', l, t', subs', facts, meths, comment), subst_ctxt')
end
and rationalize_proof (subst_ctxt as (subst, _)) (Proof (fix, assms, steps)) =
Proof (fix, map (apsnd (subst_atomic subst)) assms,
fst (fold_map rationalize_step steps subst_ctxt))
in
rationalize_proof ([], ctxt)
end
val thesis_var = HOLogic.mk_Trueprop (Var ((Auto_Bind.thesisN, 0), HOLogic.boolT))
val indent_size = 2
fun string_of_isar_proof ctxt0 i n proof =
let
(* Make sure only type constraints inserted by the type annotation code are printed. *)
val ctxt = ctxt0
|> Config.put show_markup false
|> Config.put Printer.show_type_emphasis false
|> Config.put show_types false
|> Config.put show_sorts false
|> Config.put show_consts false
fun add_str s' = apfst (suffix s')
fun of_indent ind = replicate_string (ind * indent_size) " "
fun of_moreover ind = of_indent ind ^ "moreover\n"
fun of_label l = if l = no_label then "" else string_of_label l ^ ": "
fun of_obtain qs nr =
(if nr > 1 orelse (nr = 1 andalso member (op =) qs Then) then "ultimately "
else if nr = 1 orelse member (op =) qs Then then "then "
else "") ^ "obtain"
fun of_show_have qs = if member (op =) qs Show then "show" else "have"
fun of_thus_hence qs = if member (op =) qs Show then "thus" else "hence"
fun of_have qs nr =
if nr > 1 orelse (nr = 1 andalso member (op =) qs Then) then "ultimately " ^ of_show_have qs
else if nr = 1 orelse member (op =) qs Then then of_thus_hence qs
else of_show_have qs
fun add_term term (s, ctxt) =
(s ^ (term
|> singleton (Syntax.uncheck_terms ctxt)
|> annotate_types_in_term ctxt
|> with_vanilla_print_mode (Syntax.unparse_term ctxt #> Pretty.string_of)
|> simplify_spaces
|> maybe_quote),
ctxt |> perhaps (try (Variable.auto_fixes term)))
fun using_facts [] [] = ""
| using_facts ls ss = enclose "using " " " (space_implode " " (map string_of_label ls @ ss))
(* Local facts are always passed via "using", which affects "meson" and "metis". This is
arguably stylistically superior, because it emphasises the structure of the proof. It is also
more robust w.r.t. preplay: Preplay is performed before chaining of local facts with "hence"
and "thus" is introduced. See also "tac_of_method" in "Sledgehammer_Isar_Preplay". *)
fun of_method ls ss meth =
let val direct = is_proof_method_direct meth in
using_facts ls (if direct then [] else ss) ^
"by " ^ string_of_proof_method ctxt (if direct then ss else []) meth
end
fun of_free (s, T) =
maybe_quote s ^ " :: " ^
maybe_quote (simplify_spaces (with_vanilla_print_mode (Syntax.string_of_typ ctxt) T))
fun add_frees xs (s, ctxt) =
(s ^ space_implode " and " (map of_free xs), ctxt |> fold Variable.auto_fixes (map Free xs))
fun add_fix _ [] = I
| add_fix ind xs = add_str (of_indent ind ^ "fix ") #> add_frees xs #> add_str "\n"
fun add_assm ind (l, t) =
add_str (of_indent ind ^ "assume " ^ of_label l) #> add_term t #> add_str "\n"
fun of_subproof ind ctxt proof =
let
val ind = ind + 1
val s = of_proof ind ctxt proof
val prefix = "{ "
val suffix = " }"
in
replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
String.extract (s, ind * indent_size, SOME (size s - ind * indent_size - 1)) ^
suffix ^ "\n"
end
and of_subproofs _ _ _ [] = ""
| of_subproofs ind ctxt qs subs =
(if member (op =) qs Then then of_moreover ind else "") ^
space_implode (of_moreover ind) (map (of_subproof ind ctxt) subs)
and add_step_pre ind qs subs (s, ctxt) =
(s ^ of_subproofs ind ctxt qs subs ^ of_indent ind, ctxt)
and add_step ind (Let (t1, t2)) =
add_str (of_indent ind ^ "let ") #> add_term t1 #> add_str " = " #> add_term t2
#> add_str "\n"
| add_step ind (Prove (qs, xs, l, t, subs, (ls, ss), meth :: _, comment)) =
add_step_pre ind qs subs
#> (case xs of
[] => add_str (of_have qs (length subs) ^ " ")
| _ =>
add_str (of_obtain qs (length subs) ^ " ")
#> add_frees xs
#> add_str (" where\n" ^ of_indent (ind + 1)))
#> add_str (of_label l)
#> add_term (if member (op =) qs Show then thesis_var else t)
#> add_str ("\n" ^ of_indent (ind + 1) ^ of_method ls ss meth ^
(if comment = "" then "" else " (* " ^ comment ^ " *)") ^ "\n")
and add_steps ind = fold (add_step ind)
and of_proof ind ctxt (Proof (xs, assms, steps)) =
("", ctxt)
|> add_fix ind xs
|> fold (add_assm ind) assms
|> add_steps ind steps
|> fst
in
(if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
of_indent 0 ^ "proof -\n" ^ of_proof 1 ctxt proof ^
of_indent 0 ^ (if n = 1 then "qed" else "next")
end
end;