(* Title: HOLCF/Up3.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Class instance of ('a)u for class pcpo
*)
(* for compatibility with old HOLCF-Version *)
Goal "UU = Abs_Up(Inl ())";
by (simp_tac (HOL_ss addsimps [UU_def,UU_up_def]) 1);
qed "inst_up_pcpo";
(* -------------------------------------------------------------------------*)
(* some lemmas restated for class pcpo *)
(* ------------------------------------------------------------------------ *)
Goal "~ Iup(x) << UU";
by (stac inst_up_pcpo 1);
by (rtac less_up2b 1);
qed "less_up3b";
Goal "Iup(x) ~= UU";
by (stac inst_up_pcpo 1);
by (rtac defined_Iup 1);
qed "defined_Iup2";
(* ------------------------------------------------------------------------ *)
(* continuity for Iup *)
(* ------------------------------------------------------------------------ *)
Goal "contlub(Iup)";
by (rtac contlubI 1);
by (strip_tac 1);
by (rtac trans 1);
by (rtac (thelub_up1a RS sym) 2);
by (fast_tac HOL_cs 3);
by (etac (monofun_Iup RS ch2ch_monofun) 2);
by (res_inst_tac [("f","Iup")] arg_cong 1);
by (rtac lub_equal 1);
by (atac 1);
by (rtac (monofun_Ifup2 RS ch2ch_monofun) 1);
by (etac (monofun_Iup RS ch2ch_monofun) 1);
by (asm_simp_tac Up0_ss 1);
qed "contlub_Iup";
Goal "cont(Iup)";
by (rtac monocontlub2cont 1);
by (rtac monofun_Iup 1);
by (rtac contlub_Iup 1);
qed "cont_Iup";
(* ------------------------------------------------------------------------ *)
(* continuity for Ifup *)
(* ------------------------------------------------------------------------ *)
Goal "contlub(Ifup)";
by (rtac contlubI 1);
by (strip_tac 1);
by (rtac trans 1);
by (rtac (thelub_fun RS sym) 2);
by (etac (monofun_Ifup1 RS ch2ch_monofun) 2);
by (rtac ext 1);
by (res_inst_tac [("p","x")] upE 1);
by (asm_simp_tac Up0_ss 1);
by (rtac (lub_const RS thelubI RS sym) 1);
by (asm_simp_tac Up0_ss 1);
by (etac contlub_cfun_fun 1);
qed "contlub_Ifup1";
Goal "contlub(Ifup(f))";
by (rtac contlubI 1);
by (strip_tac 1);
by (rtac disjE 1);
by (stac thelub_up1a 2);
by (atac 2);
by (atac 2);
by (asm_simp_tac Up0_ss 2);
by (stac thelub_up1b 3);
by (atac 3);
by (atac 3);
by (fast_tac HOL_cs 1);
by (asm_simp_tac Up0_ss 2);
by (rtac (chain_UU_I_inverse RS sym) 2);
by (rtac allI 2);
by (res_inst_tac [("p","Y(i)")] upE 2);
by (asm_simp_tac Up0_ss 2);
by (rtac notE 2);
by (dtac spec 2);
by (etac spec 2);
by (atac 2);
by (stac contlub_cfun_arg 1);
by (etac (monofun_Ifup2 RS ch2ch_monofun) 1);
by (rtac lub_equal2 1);
by (rtac (monofun_Rep_CFun2 RS ch2ch_monofun) 2);
by (etac (monofun_Ifup2 RS ch2ch_monofun) 2);
by (etac (monofun_Ifup2 RS ch2ch_monofun) 2);
by (rtac (chain_mono2 RS exE) 1);
by (atac 2);
by (etac exE 1);
by (etac exE 1);
by (rtac exI 1);
by (res_inst_tac [("s","Iup(x)"),("t","Y(i)")] ssubst 1);
by (atac 1);
by (rtac defined_Iup2 1);
by (rtac exI 1);
by (strip_tac 1);
by (res_inst_tac [("p","Y(i)")] upE 1);
by (asm_simp_tac Up0_ss 2);
by (res_inst_tac [("P","Y(i) = UU")] notE 1);
by (fast_tac HOL_cs 1);
by (stac inst_up_pcpo 1);
by (atac 1);
qed "contlub_Ifup2";
Goal "cont(Ifup)";
by (rtac monocontlub2cont 1);
by (rtac monofun_Ifup1 1);
by (rtac contlub_Ifup1 1);
qed "cont_Ifup1";
Goal "cont(Ifup(f))";
by (rtac monocontlub2cont 1);
by (rtac monofun_Ifup2 1);
by (rtac contlub_Ifup2 1);
qed "cont_Ifup2";
(* ------------------------------------------------------------------------ *)
(* continuous versions of lemmas for ('a)u *)
(* ------------------------------------------------------------------------ *)
qed_goalw "Exh_Up1" thy [up_def] "z = UU | (? x. z = up`x)"
(fn prems =>
[
(simp_tac (Up0_ss addsimps [cont_Iup]) 1),
(stac inst_up_pcpo 1),
(rtac Exh_Up 1)
]);
qed_goalw "inject_up" thy [up_def] "up`x=up`y ==> x=y"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac inject_Iup 1),
(etac box_equals 1),
(simp_tac (Up0_ss addsimps [cont_Iup]) 1),
(simp_tac (Up0_ss addsimps [cont_Iup]) 1)
]);
qed_goalw "defined_up" thy [up_def] " up`x ~= UU"
(fn prems =>
[
(simp_tac (Up0_ss addsimps [cont_Iup]) 1),
(rtac defined_Iup2 1)
]);
qed_goalw "upE1" thy [up_def]
"[| p=UU ==> Q; !!x. p=up`x==>Q|] ==>Q"
(fn prems =>
[
(rtac upE 1),
(resolve_tac prems 1),
(etac (inst_up_pcpo RS ssubst) 1),
(resolve_tac (tl prems) 1),
(asm_simp_tac (Up0_ss addsimps [cont_Iup]) 1)
]);
val tac = (simp_tac (simpset() addsimps [cont_Iup,cont_Ifup1,
cont_Ifup2,cont2cont_CF1L]) 1);
qed_goalw "fup1" thy [up_def,fup_def] "fup`f`UU=UU"
(fn prems =>
[
(stac inst_up_pcpo 1),
(stac beta_cfun 1),
tac,
(stac beta_cfun 1),
tac,
(simp_tac (Up0_ss addsimps [cont_Iup,cont_Ifup1,cont_Ifup2]) 1)
]);
qed_goalw "fup2" thy [up_def,fup_def] "fup`f`(up`x)=f`x"
(fn prems =>
[
(stac beta_cfun 1),
(rtac cont_Iup 1),
(stac beta_cfun 1),
tac,
(stac beta_cfun 1),
(rtac cont_Ifup2 1),
(simp_tac (Up0_ss addsimps [cont_Iup,cont_Ifup1,cont_Ifup2]) 1)
]);
qed_goalw "less_up4b" thy [up_def,fup_def] "~ up`x << UU"
(fn prems =>
[
(simp_tac (Up0_ss addsimps [cont_Iup]) 1),
(rtac less_up3b 1)
]);
qed_goalw "less_up4c" thy [up_def,fup_def]
"(up`x << up`y) = (x<<y)"
(fn prems =>
[
(simp_tac (Up0_ss addsimps [cont_Iup]) 1),
(rtac less_up2c 1)
]);
qed_goalw "thelub_up2a" thy [up_def,fup_def]
"[| chain(Y); ? i x. Y(i) = up`x |] ==>\
\ lub(range(Y)) = up`(lub(range(%i. fup`(LAM x. x)`(Y i))))"
(fn prems =>
[
(cut_facts_tac prems 1),
(stac beta_cfun 1),
tac,
(stac beta_cfun 1),
tac,
(stac (beta_cfun RS ext) 1),
tac,
(rtac thelub_up1a 1),
(atac 1),
(etac exE 1),
(etac exE 1),
(rtac exI 1),
(rtac exI 1),
(etac box_equals 1),
(rtac refl 1),
(simp_tac (Up0_ss addsimps [cont_Iup]) 1)
]);
qed_goalw "thelub_up2b" thy [up_def,fup_def]
"[| chain(Y); ! i x. Y(i) ~= up`x |] ==> lub(range(Y)) = UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(stac inst_up_pcpo 1),
(rtac thelub_up1b 1),
(atac 1),
(strip_tac 1),
(dtac spec 1),
(dtac spec 1),
(rtac swap 1),
(atac 1),
(dtac notnotD 1),
(etac box_equals 1),
(rtac refl 1),
(simp_tac (Up0_ss addsimps [cont_Iup]) 1)
]);
Goal "(? x. z = up`x) = (z~=UU)";
by (rtac iffI 1);
by (etac exE 1);
by (hyp_subst_tac 1);
by (rtac defined_up 1);
by (res_inst_tac [("p","z")] upE1 1);
by (etac notE 1);
by (atac 1);
by (etac exI 1);
qed "up_lemma2";
Goal "[| chain(Y); lub(range(Y)) = up`x |] ==> ? i x. Y(i) = up`x";
by (rtac exE 1);
by (rtac chain_UU_I_inverse2 1);
by (rtac (up_lemma2 RS iffD1) 1);
by (etac exI 1);
by (rtac exI 1);
by (rtac (up_lemma2 RS iffD2) 1);
by (atac 1);
qed "thelub_up2a_rev";
Goal "[| chain(Y); lub(range(Y)) = UU |] ==> ! i x. Y(i) ~= up`x";
by (cut_facts_tac prems 1);
by (rtac allI 1);
by (rtac (not_ex RS iffD1) 1);
by (rtac contrapos 1);
by (etac (up_lemma2 RS iffD1) 2);
by (fast_tac (HOL_cs addSDs [chain_UU_I RS spec]) 1);
qed "thelub_up2b_rev";
Goal "chain(Y) ==> lub(range(Y)) = UU | \
\ lub(range(Y)) = up`(lub(range(%i. fup`(LAM x. x)`(Y i))))";
by (cut_facts_tac prems 1);
by (rtac disjE 1);
by (rtac disjI1 2);
by (rtac thelub_up2b 2);
by (atac 2);
by (atac 2);
by (rtac disjI2 2);
by (rtac thelub_up2a 2);
by (atac 2);
by (atac 2);
by (fast_tac HOL_cs 1);
qed "thelub_up3";
Goal "fup`up`x=x";
by (res_inst_tac [("p","x")] upE1 1);
by (asm_simp_tac ((simpset_of Cfun3.thy) addsimps [fup1,fup2]) 1);
by (asm_simp_tac ((simpset_of Cfun3.thy) addsimps [fup1,fup2]) 1);
qed "fup3";
(* ------------------------------------------------------------------------ *)
(* install simplifier for ('a)u *)
(* ------------------------------------------------------------------------ *)
Addsimps [fup1,fup2,defined_up];