(* Title: HOL/Auth/Recur
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Inductive relation "recur" for the Recursive Authentication protocol.
*)
open Recur;
proof_timing:=true;
HOL_quantifiers := false;
Pretty.setdepth 30;
(** Possibility properties: traces that reach the end
ONE theorem would be more elegant and faster!
By induction on a list of agents (no repetitions)
**)
(*Simplest case: Alice goes directly to the server*)
goal thy
"!!A. A ~= Server \
\ ==> EX K NA. EX evs: recur. \
\ Says Server A {|Crypt (shrK A) {|Key K, Agent Server, Nonce NA|}, \
\ Agent Server|} : set evs";
by (REPEAT (resolve_tac [exI,bexI] 1));
by (rtac (recur.Nil RS recur.RA1 RS
(respond.One RSN (4,recur.RA3))) 2);
by possibility_tac;
result();
(*Case two: Alice, Bob and the server*)
goal thy
"!!A B. [| A ~= B; A ~= Server; B ~= Server |] \
\ ==> EX K. EX NA. EX evs: recur. \
\ Says B A {|Crypt (shrK A) {|Key K, Agent B, Nonce NA|}, \
\ Agent Server|} : set evs";
by (cut_facts_tac [Nonce_supply2, Key_supply2] 1);
by (REPEAT (eresolve_tac [exE, conjE] 1));
by (REPEAT (resolve_tac [exI,bexI] 1));
by (rtac (recur.Nil RS recur.RA1 RS recur.RA2 RS
(respond.One RS respond.Cons RSN (4,recur.RA3)) RS
recur.RA4) 2);
by basic_possibility_tac;
by (DEPTH_SOLVE (eresolve_tac [asm_rl, less_not_refl2,
less_not_refl2 RS not_sym] 1));
result();
(*Case three: Alice, Bob, Charlie and the server
TOO SLOW to run every time!
goal thy
"!!A B. [| A ~= B; B ~= C; A ~= Server; B ~= Server; C ~= Server |] \
\ ==> EX K. EX NA. EX evs: recur. \
\ Says B A {|Crypt (shrK A) {|Key K, Agent B, Nonce NA|}, \
\ Agent Server|} : set evs";
by (cut_facts_tac [Nonce_supply3, Key_supply3] 1);
by (REPEAT (eresolve_tac [exE, conjE] 1));
by (REPEAT (resolve_tac [exI,bexI] 1));
by (rtac (recur.Nil RS recur.RA1 RS recur.RA2 RS recur.RA2 RS
(respond.One RS respond.Cons RS respond.Cons RSN
(4,recur.RA3)) RS recur.RA4 RS recur.RA4) 2);
(*SLOW: 70 seconds*)
by basic_possibility_tac;
by (DEPTH_SOLVE (swap_res_tac [refl, conjI, disjCI] 1
ORELSE
eresolve_tac [asm_rl, less_not_refl2,
less_not_refl2 RS not_sym] 1));
result();
****************)
(**** Inductive proofs about recur ****)
(*Nobody sends themselves messages*)
goal thy "!!evs. evs : recur ==> ALL A X. Says A A X ~: set evs";
by (etac recur.induct 1);
by (Auto_tac());
qed_spec_mp "not_Says_to_self";
Addsimps [not_Says_to_self];
AddSEs [not_Says_to_self RSN (2, rev_notE)];
goal thy "!!evs. (PA,RB,KAB) : respond evs ==> Key KAB : parts{RB}";
by (etac respond.induct 1);
by (ALLGOALS Simp_tac);
qed "respond_Key_in_parts";
goal thy "!!evs. (PA,RB,KAB) : respond evs ==> Key KAB ~: used evs";
by (etac respond.induct 1);
by (REPEAT (assume_tac 1));
qed "respond_imp_not_used";
goal thy
"!!evs. [| Key K : parts {RB}; (PB,RB,K') : respond evs |] \
\ ==> Key K ~: used evs";
by (etac rev_mp 1);
by (etac respond.induct 1);
by (auto_tac(!claset addDs [Key_not_used, respond_imp_not_used],
!simpset));
qed_spec_mp "Key_in_parts_respond";
(*Simple inductive reasoning about responses*)
goal thy "!!evs. (PA,RB,KAB) : respond evs ==> RB : responses evs";
by (etac respond.induct 1);
by (REPEAT (ares_tac (respond_imp_not_used::responses.intrs) 1));
qed "respond_imp_responses";
(** For reasoning about the encrypted portion of messages **)
val RA2_analz_spies = Says_imp_spies RS analz.Inj |> standard;
goal thy "!!evs. Says C' B {|Crypt K X, X', RA|} : set evs \
\ ==> RA : analz (spies evs)";
by (blast_tac (!claset addSDs [Says_imp_spies RS analz.Inj]) 1);
qed "RA4_analz_spies";
(*RA2_analz... and RA4_analz... let us treat those cases using the same
argument as for the Fake case. This is possible for most, but not all,
proofs: Fake does not invent new nonces (as in RA2), and of course Fake
messages originate from the Spy. *)
bind_thm ("RA2_parts_spies",
RA2_analz_spies RS (impOfSubs analz_subset_parts));
bind_thm ("RA4_parts_spies",
RA4_analz_spies RS (impOfSubs analz_subset_parts));
(*For proving the easier theorems about X ~: parts (spies evs).*)
fun parts_induct_tac i =
etac recur.induct i THEN
forward_tac [RA2_parts_spies] (i+3) THEN
etac subst (i+3) (*RA2: DELETE needless definition of PA!*) THEN
forward_tac [respond_imp_responses] (i+4) THEN
forward_tac [RA4_parts_spies] (i+5) THEN
prove_simple_subgoals_tac i;
(** Theorems of the form X ~: parts (spies evs) imply that NOBODY
sends messages containing X! **)
(** Spy never sees another agent's shared key! (unless it's bad at start) **)
goal thy
"!!evs. evs : recur ==> (Key (shrK A) : parts (spies evs)) = (A : bad)";
by (parts_induct_tac 1);
by (Fake_parts_insert_tac 1);
by (ALLGOALS
(asm_simp_tac (!simpset addsimps [parts_insert2, parts_insert_spies])));
(*RA3*)
by (blast_tac (!claset addDs [Key_in_parts_respond]) 2);
(*RA2*)
by (blast_tac (!claset addSEs partsEs addDs [parts_cut]) 1);
qed "Spy_see_shrK";
Addsimps [Spy_see_shrK];
goal thy
"!!evs. evs : recur ==> (Key (shrK A) : analz (spies evs)) = (A : bad)";
by (auto_tac(!claset addDs [impOfSubs analz_subset_parts], !simpset));
qed "Spy_analz_shrK";
Addsimps [Spy_analz_shrK];
goal thy "!!A. [| Key (shrK A) : parts (spies evs); evs : recur |] ==> A:bad";
by (blast_tac (!claset addDs [Spy_see_shrK]) 1);
qed "Spy_see_shrK_D";
bind_thm ("Spy_analz_shrK_D", analz_subset_parts RS subsetD RS Spy_see_shrK_D);
AddSDs [Spy_see_shrK_D, Spy_analz_shrK_D];
(** Nobody can have used non-existent keys! **)
goal thy
"!!evs. [| K : keysFor (parts {RB}); (PB,RB,K') : respond evs |] \
\ ==> K : range shrK";
by (etac rev_mp 1);
by (etac (respond_imp_responses RS responses.induct) 1);
by (Auto_tac());
qed_spec_mp "Key_in_keysFor_parts";
goal thy "!!evs. evs : recur ==> \
\ Key K ~: used evs --> K ~: keysFor (parts (spies evs))";
by (parts_induct_tac 1);
(*RA3*)
by (best_tac (!claset addDs [Key_in_keysFor_parts]
addss (!simpset addsimps [parts_insert_spies])) 2);
(*Fake*)
by (best_tac
(!claset addIs [impOfSubs analz_subset_parts]
addDs [impOfSubs (analz_subset_parts RS keysFor_mono),
impOfSubs (parts_insert_subset_Un RS keysFor_mono)]
addss (!simpset)) 1);
qed_spec_mp "new_keys_not_used";
bind_thm ("new_keys_not_analzd",
[analz_subset_parts RS keysFor_mono,
new_keys_not_used] MRS contra_subsetD);
Addsimps [new_keys_not_used, new_keys_not_analzd];
(*** Proofs involving analz ***)
(*For proofs involving analz.*)
val analz_spies_tac =
etac subst 4 (*RA2: DELETE needless definition of PA!*) THEN
dtac RA2_analz_spies 4 THEN
forward_tac [respond_imp_responses] 5 THEN
dtac RA4_analz_spies 6;
(** Session keys are not used to encrypt other session keys **)
(*Version for "responses" relation. Handles case RA3 in the theorem below.
Note that it holds for *any* set H (not just "spies evs")
satisfying the inductive hypothesis.*)
goal thy
"!!evs. [| RB : responses evs; \
\ ALL K KK. KK <= Compl (range shrK) --> \
\ (Key K : analz (Key``KK Un H)) = \
\ (K : KK | Key K : analz H) |] \
\ ==> ALL K KK. KK <= Compl (range shrK) --> \
\ (Key K : analz (insert RB (Key``KK Un H))) = \
\ (K : KK | Key K : analz (insert RB H))";
by (etac responses.induct 1);
by (ALLGOALS (asm_simp_tac analz_image_freshK_ss));
qed "resp_analz_image_freshK_lemma";
(*Version for the protocol. Proof is almost trivial, thanks to the lemma.*)
goal thy
"!!evs. evs : recur ==> \
\ ALL K KK. KK <= Compl (range shrK) --> \
\ (Key K : analz (Key``KK Un (spies evs))) = \
\ (K : KK | Key K : analz (spies evs))";
by (etac recur.induct 1);
by analz_spies_tac;
by (REPEAT_FIRST (resolve_tac [allI, impI]));
by (REPEAT_FIRST (rtac analz_image_freshK_lemma ));
by (ALLGOALS
(asm_simp_tac
(analz_image_freshK_ss addsimps [resp_analz_image_freshK_lemma])));
(*Base*)
by (Blast_tac 1);
(*Fake*)
by (spy_analz_tac 1);
val raw_analz_image_freshK = result();
qed_spec_mp "analz_image_freshK";
(*Instance of the lemma with H replaced by (spies evs):
[| RB : responses evs; evs : recur; |]
==> KK <= Compl (range shrK) -->
Key K : analz (insert RB (Key``KK Un spies evs)) =
(K : KK | Key K : analz (insert RB (spies evs)))
*)
bind_thm ("resp_analz_image_freshK",
raw_analz_image_freshK RSN
(2, resp_analz_image_freshK_lemma) RS spec RS spec);
goal thy
"!!evs. [| evs : recur; KAB ~: range shrK |] ==> \
\ Key K : analz (insert (Key KAB) (spies evs)) = \
\ (K = KAB | Key K : analz (spies evs))";
by (asm_simp_tac (analz_image_freshK_ss addsimps [analz_image_freshK]) 1);
qed "analz_insert_freshK";
(*Everything that's hashed is already in past traffic. *)
goal thy "!!evs. [| Hash {|Key(shrK A), X|} : parts (spies evs); \
\ evs : recur; A ~: bad |] \
\ ==> X : parts (spies evs)";
by (etac rev_mp 1);
by (parts_induct_tac 1);
(*RA3 requires a further induction*)
by (etac responses.induct 2);
by (ALLGOALS Asm_simp_tac);
(*Fake*)
by (simp_tac (!simpset addsimps [parts_insert_spies]) 1);
by (Fake_parts_insert_tac 1);
qed "Hash_imp_body";
(** The Nonce NA uniquely identifies A's message.
This theorem applies to steps RA1 and RA2!
Unicity is not used in other proofs but is desirable in its own right.
**)
goal thy
"!!evs. [| evs : recur; A ~: bad |] \
\ ==> EX B' P'. ALL B P. \
\ Hash {|Key(shrK A), Agent A, B, NA, P|} : parts (spies evs) \
\ --> B=B' & P=P'";
by (parts_induct_tac 1);
by (Fake_parts_insert_tac 1);
by (etac responses.induct 3);
by (ALLGOALS (simp_tac (!simpset addsimps [all_conj_distrib])));
by (clarify_tac (!claset addSEs partsEs) 1);
(*RA1,2: creation of new Nonce. Move assertion into global context*)
by (ALLGOALS (expand_case_tac "NA = ?y"));
by (REPEAT_FIRST (ares_tac [exI]));
by (REPEAT (blast_tac (!claset addSDs [Hash_imp_body]
addSEs spies_partsEs) 1));
val lemma = result();
goalw thy [HPair_def]
"!!A.[| Hash[Key(shrK A)] {|Agent A, B,NA,P|} : parts(spies evs); \
\ Hash[Key(shrK A)] {|Agent A, B',NA,P'|} : parts(spies evs); \
\ evs : recur; A ~: bad |] \
\ ==> B=B' & P=P'";
by (REPEAT (eresolve_tac partsEs 1));
by (prove_unique_tac lemma 1);
qed "unique_NA";
(*** Lemmas concerning the Server's response
(relations "respond" and "responses")
***)
goal thy
"!!evs. [| RB : responses evs; evs : recur |] \
\ ==> (Key (shrK B) : analz (insert RB (spies evs))) = (B:bad)";
by (etac responses.induct 1);
by (ALLGOALS
(asm_simp_tac
(analz_image_freshK_ss addsimps [Spy_analz_shrK,
resp_analz_image_freshK])));
qed "shrK_in_analz_respond";
Addsimps [shrK_in_analz_respond];
goal thy
"!!evs. [| RB : responses evs; \
\ ALL K KK. KK <= Compl (range shrK) --> \
\ (Key K : analz (Key``KK Un H)) = \
\ (K : KK | Key K : analz H) |] \
\ ==> (Key K : analz (insert RB H)) --> \
\ (Key K : parts{RB} | Key K : analz H)";
by (etac responses.induct 1);
by (ALLGOALS
(asm_simp_tac
(analz_image_freshK_ss addsimps [resp_analz_image_freshK_lemma])));
(*Simplification using two distinct treatments of "image"*)
by (simp_tac (!simpset addsimps [parts_insert2]) 1);
by (blast_tac (!claset delrules [allE]) 1);
qed "resp_analz_insert_lemma";
bind_thm ("resp_analz_insert",
raw_analz_image_freshK RSN
(2, resp_analz_insert_lemma) RSN(2, rev_mp));
(*The Server does not send such messages. This theorem lets us avoid
assuming B~=Server in RA4.*)
goal thy
"!!evs. evs : recur \
\ ==> ALL C X Y. Says Server C {|X, Agent Server, Y|} ~: set evs";
by (etac recur.induct 1);
by (etac (respond.induct) 5);
by (Auto_tac());
qed_spec_mp "Says_Server_not";
AddSEs [Says_Server_not RSN (2,rev_notE)];
(*The last key returned by respond indeed appears in a certificate*)
goal thy
"!!K. (Hash[Key(shrK A)] {|Agent A, B, NA, P|}, RA, K) : respond evs \
\ ==> Crypt (shrK A) {|Key K, B, NA|} : parts {RA}";
by (etac respond.elim 1);
by (ALLGOALS Asm_full_simp_tac);
qed "respond_certificate";
goal thy
"!!K'. (PB,RB,KXY) : respond evs \
\ ==> EX A' B'. ALL A B N. \
\ Crypt (shrK A) {|Key K, Agent B, N|} : parts {RB} \
\ --> (A'=A & B'=B) | (A'=B & B'=A)";
by (etac respond.induct 1);
by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [all_conj_distrib])));
(*Base case*)
by (Blast_tac 1);
by Safe_tac;
by (expand_case_tac "K = KBC" 1);
by (dtac respond_Key_in_parts 1);
by (blast_tac (!claset addSIs [exI]
addSEs partsEs
addDs [Key_in_parts_respond]) 1);
by (expand_case_tac "K = KAB" 1);
by (REPEAT (ares_tac [exI] 2));
by (ex_strip_tac 1);
by (dtac respond_certificate 1);
by (Fast_tac 1);
val lemma = result();
goal thy
"!!RB. [| Crypt (shrK A) {|Key K, Agent B, N|} : parts {RB}; \
\ Crypt (shrK A') {|Key K, Agent B', N'|} : parts {RB}; \
\ (PB,RB,KXY) : respond evs |] \
\ ==> (A'=A & B'=B) | (A'=B & B'=A)";
by (prove_unique_tac lemma 1);
qed "unique_session_keys";
(** Crucial secrecy property: Spy does not see the keys sent in msg RA3
Does not in itself guarantee security: an attack could violate
the premises, e.g. by having A=Spy **)
goal thy
"!!evs. [| (PB,RB,KAB) : respond evs; evs : recur |] \
\ ==> ALL A A' N. A ~: bad & A' ~: bad --> \
\ Crypt (shrK A) {|Key K, Agent A', N|} : parts{RB} --> \
\ Key K ~: analz (insert RB (spies evs))";
by (etac respond.induct 1);
by (forward_tac [respond_imp_responses] 2);
by (forward_tac [respond_imp_not_used] 2);
by (ALLGOALS (*12 seconds*)
(asm_simp_tac
(analz_image_freshK_ss addsimps
[shrK_in_analz_respond, resp_analz_image_freshK, parts_insert2])));
by (ALLGOALS (simp_tac (!simpset addsimps [ex_disj_distrib])));
(** LEVEL 5 **)
by (blast_tac (!claset addIs [impOfSubs analz_subset_parts]) 1);
by (safe_tac (!claset addSEs [MPair_parts]));
by (REPEAT (blast_tac (!claset addSDs [respond_certificate]
addDs [resp_analz_insert]
addIs [impOfSubs analz_subset_parts]) 4));
by (Blast_tac 3);
by (blast_tac (!claset addSEs partsEs
addDs [Key_in_parts_respond]) 2);
(*by unicity, either B=Aa or B=A', a contradiction since B: bad*)
by (dtac unique_session_keys 1);
by (etac respond_certificate 1);
by (assume_tac 1);
by (Blast_tac 1);
qed_spec_mp "respond_Spy_not_see_session_key";
goal thy
"!!evs. [| Crypt (shrK A) {|Key K, Agent A', N|} : parts (spies evs); \
\ A ~: bad; A' ~: bad; evs : recur |] \
\ ==> Key K ~: analz (spies evs)";
by (etac rev_mp 1);
by (etac recur.induct 1);
by analz_spies_tac;
by (ALLGOALS
(asm_simp_tac
(!simpset addsimps [analz_insert_eq, parts_insert_spies,
analz_insert_freshK]
setloop split_tac [expand_if])));
(*RA4*)
by (spy_analz_tac 5);
(*RA2*)
by (spy_analz_tac 3);
(*Fake*)
by (spy_analz_tac 2);
(*Base*)
by (Blast_tac 1);
(*RA3 remains*)
by (safe_tac (!claset delrules [impCE]));
(*RA3, case 2: K is an old key*)
by (blast_tac (!claset addSDs [resp_analz_insert]
addSEs partsEs
addDs [Key_in_parts_respond]) 2);
(*RA3, case 1: use lemma previously proved by induction*)
by (blast_tac (!claset addSEs [respond_Spy_not_see_session_key RSN
(2,rev_notE)]) 1);
qed "Spy_not_see_session_key";
(**** Authenticity properties for Agents ****)
(*The response never contains Hashes*)
goal thy
"!!evs. [| Hash {|Key (shrK B), M|} : parts (insert RB H); \
\ (PB,RB,K) : respond evs |] \
\ ==> Hash {|Key (shrK B), M|} : parts H";
by (etac rev_mp 1);
by (etac (respond_imp_responses RS responses.induct) 1);
by (Auto_tac());
qed "Hash_in_parts_respond";
(*Only RA1 or RA2 can have caused such a part of a message to appear.
This result is of no use to B, who cannot verify the Hash. Moreover,
it can say nothing about how recent A's message is. It might later be
used to prove B's presence to A at the run's conclusion.*)
goalw thy [HPair_def]
"!!evs. [| Hash {|Key(shrK A), Agent A, Agent B, NA, P|} : parts(spies evs); \
\ A ~: bad; evs : recur |] \
\ ==> Says A B (Hash[Key(shrK A)] {|Agent A, Agent B, NA, P|}) : set evs";
by (etac rev_mp 1);
by (parts_induct_tac 1);
by (Fake_parts_insert_tac 1);
(*RA3*)
by (blast_tac (!claset addSDs [Hash_in_parts_respond]) 1);
qed_spec_mp "Hash_auth_sender";
(** These two results subsume (for all agents) the guarantees proved
separately for A and B in the Otway-Rees protocol.
**)
(*Certificates can only originate with the Server.*)
goal thy
"!!evs. [| Crypt (shrK A) Y : parts (spies evs); \
\ A ~: bad; A ~= Spy; evs : recur |] \
\ ==> EX C RC. Says Server C RC : set evs & \
\ Crypt (shrK A) Y : parts {RC}";
by (etac rev_mp 1);
by (parts_induct_tac 1);
by (Fake_parts_insert_tac 1);
(*RA4*)
by (Blast_tac 4);
(*RA3*)
by (full_simp_tac (!simpset addsimps [parts_insert_spies]) 3
THEN Blast_tac 3);
(*RA1*)
by (Blast_tac 1);
(*RA2: it cannot be a new Nonce, contradiction.*)
by (Blast_tac 1);
qed "Cert_imp_Server_msg";