(* Title: HOL/int_factor_simprocs.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 2000 University of Cambridge
Factor cancellation simprocs for the integers (and for fields).
This file can't be combined with int_arith1 because it requires IntDiv.thy.
*)
(*To quote from Provers/Arith/cancel_numeral_factor.ML:
Cancels common coefficients in balanced expressions:
u*#m ~~ u'*#m' == #n*u ~~ #n'*u'
where ~~ is an appropriate balancing operation (e.g. =, <=, <, div, /)
and d = gcd(m,m') and n=m/d and n'=m'/d.
*)
val rel_number_of = [eq_number_of_eq, less_number_of_eq_neg, le_number_of_eq];
(** Factor cancellation theorems for integer division (div, not /) **)
Goal "!!k::int. k~=0 ==> (k*m) div (k*n) = (m div n)";
by (stac @{thm zdiv_zmult_zmult1} 1);
by Auto_tac;
qed "int_mult_div_cancel1";
(*For ExtractCommonTermFun, cancelling common factors*)
Goal "(k*m) div (k*n) = (if k = (0::int) then 0 else m div n)";
by (simp_tac (simpset() addsimps [int_mult_div_cancel1]) 1);
qed "int_mult_div_cancel_disj";
local
open Int_Numeral_Simprocs
in
structure CancelNumeralFactorCommon =
struct
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff 1
val trans_tac = fn _ => trans_tac
val norm_ss1 = HOL_ss addsimps minus_from_mult_simps @ mult_1s
val norm_ss2 = HOL_ss addsimps simps @ mult_minus_simps
val norm_ss3 = HOL_ss addsimps mult_ac
fun norm_tac ss =
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))
val numeral_simp_ss = HOL_ss addsimps rel_number_of @ simps
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
val simplify_meta_eq = Int_Numeral_Simprocs.simplify_meta_eq
[@{thm add_0}, @{thm add_0_right}, @{thm mult_zero_left},
@{thm mult_zero_right}, @{thm mult_num1}, @{thm mult_1_right}];
end
(*Version for integer division*)
structure IntDivCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT
val cancel = int_mult_div_cancel1 RS trans
val neg_exchanges = false
)
(*Version for fields*)
structure DivideCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name HOL.divide}
val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT
val cancel = @{thm mult_divide_cancel_left} RS trans
val neg_exchanges = false
)
structure EqCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
val cancel = @{thm mult_cancel_left} RS trans
val neg_exchanges = false
)
structure LessCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less}
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} Term.dummyT
val cancel = @{thm mult_less_cancel_left} RS trans
val neg_exchanges = true
)
structure LeCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq}
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} Term.dummyT
val cancel = @{thm mult_le_cancel_left} RS trans
val neg_exchanges = true
)
val cancel_numeral_factors =
map Int_Numeral_Base_Simprocs.prep_simproc
[("ring_eq_cancel_numeral_factor",
["(l::'a::{idom,number_ring}) * m = n",
"(l::'a::{idom,number_ring}) = m * n"],
K EqCancelNumeralFactor.proc),
("ring_less_cancel_numeral_factor",
["(l::'a::{ordered_idom,number_ring}) * m < n",
"(l::'a::{ordered_idom,number_ring}) < m * n"],
K LessCancelNumeralFactor.proc),
("ring_le_cancel_numeral_factor",
["(l::'a::{ordered_idom,number_ring}) * m <= n",
"(l::'a::{ordered_idom,number_ring}) <= m * n"],
K LeCancelNumeralFactor.proc),
("int_div_cancel_numeral_factors",
["((l::int) * m) div n", "(l::int) div (m * n)"],
K IntDivCancelNumeralFactor.proc),
("divide_cancel_numeral_factor",
["((l::'a::{division_by_zero,field,number_ring}) * m) / n",
"(l::'a::{division_by_zero,field,number_ring}) / (m * n)",
"((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"],
K DivideCancelNumeralFactor.proc)];
(* referenced by rat_arith.ML *)
val field_cancel_numeral_factors =
map Int_Numeral_Base_Simprocs.prep_simproc
[("field_eq_cancel_numeral_factor",
["(l::'a::{field,number_ring}) * m = n",
"(l::'a::{field,number_ring}) = m * n"],
K EqCancelNumeralFactor.proc),
("field_cancel_numeral_factor",
["((l::'a::{division_by_zero,field,number_ring}) * m) / n",
"(l::'a::{division_by_zero,field,number_ring}) / (m * n)",
"((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"],
K DivideCancelNumeralFactor.proc)]
end;
Addsimprocs cancel_numeral_factors;
(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Simp_tac 1));
test "9*x = 12 * (y::int)";
test "(9*x) div (12 * (y::int)) = z";
test "9*x < 12 * (y::int)";
test "9*x <= 12 * (y::int)";
test "-99*x = 132 * (y::int)";
test "(-99*x) div (132 * (y::int)) = z";
test "-99*x < 132 * (y::int)";
test "-99*x <= 132 * (y::int)";
test "999*x = -396 * (y::int)";
test "(999*x) div (-396 * (y::int)) = z";
test "999*x < -396 * (y::int)";
test "999*x <= -396 * (y::int)";
test "-99*x = -81 * (y::int)";
test "(-99*x) div (-81 * (y::int)) = z";
test "-99*x <= -81 * (y::int)";
test "-99*x < -81 * (y::int)";
test "-2 * x = -1 * (y::int)";
test "-2 * x = -(y::int)";
test "(-2 * x) div (-1 * (y::int)) = z";
test "-2 * x < -(y::int)";
test "-2 * x <= -1 * (y::int)";
test "-x < -23 * (y::int)";
test "-x <= -23 * (y::int)";
*)
(*And the same examples for fields such as rat or real:
test "0 <= (y::rat) * -2";
test "9*x = 12 * (y::rat)";
test "(9*x) / (12 * (y::rat)) = z";
test "9*x < 12 * (y::rat)";
test "9*x <= 12 * (y::rat)";
test "-99*x = 132 * (y::rat)";
test "(-99*x) / (132 * (y::rat)) = z";
test "-99*x < 132 * (y::rat)";
test "-99*x <= 132 * (y::rat)";
test "999*x = -396 * (y::rat)";
test "(999*x) / (-396 * (y::rat)) = z";
test "999*x < -396 * (y::rat)";
test "999*x <= -396 * (y::rat)";
test "(- ((2::rat) * x) <= 2 * y)";
test "-99*x = -81 * (y::rat)";
test "(-99*x) / (-81 * (y::rat)) = z";
test "-99*x <= -81 * (y::rat)";
test "-99*x < -81 * (y::rat)";
test "-2 * x = -1 * (y::rat)";
test "-2 * x = -(y::rat)";
test "(-2 * x) / (-1 * (y::rat)) = z";
test "-2 * x < -(y::rat)";
test "-2 * x <= -1 * (y::rat)";
test "-x < -23 * (y::rat)";
test "-x <= -23 * (y::rat)";
*)
(** Declarations for ExtractCommonTerm **)
local
open Int_Numeral_Simprocs
in
(*Find first term that matches u*)
fun find_first_t past u [] = raise TERM ("find_first_t", [])
| find_first_t past u (t::terms) =
if u aconv t then (rev past @ terms)
else find_first_t (t::past) u terms
handle TERM _ => find_first_t (t::past) u terms;
(** Final simplification for the CancelFactor simprocs **)
val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq
[@{thm mult_1_left}, mult_1_right, @{thm zdiv_1}, numeral_1_eq_1];
fun cancel_simplify_meta_eq cancel_th ss th =
simplify_one ss (([th, cancel_th]) MRS trans);
(*At present, long_mk_prod creates Numeral1, so this requires the axclass
number_ring*)
structure CancelFactorCommon =
struct
val mk_sum = long_mk_prod
val dest_sum = dest_prod
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val find_first = find_first_t []
val trans_tac = fn _ => trans_tac
val norm_ss = HOL_ss addsimps mult_1s @ mult_ac
fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))
end;
(*mult_cancel_left requires a ring with no zero divisors.*)
structure EqCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" Term.dummyT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm mult_cancel_left}
);
(*int_mult_div_cancel_disj is for integer division (div).*)
structure IntDivCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT
val simplify_meta_eq = cancel_simplify_meta_eq int_mult_div_cancel_disj
);
(*Version for all fields, including unordered ones (type complex).*)
structure DivideCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name HOL.divide}
val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm mult_divide_cancel_eq_if}
);
(*The number_ring class is necessary because the simprocs refer to the
binary number 1. FIXME: probably they could use 1 instead.*)
val cancel_factors =
map Int_Numeral_Base_Simprocs.prep_simproc
[("ring_eq_cancel_factor",
["(l::'a::{idom,number_ring}) * m = n",
"(l::'a::{idom,number_ring}) = m * n"],
K EqCancelFactor.proc),
("int_div_cancel_factor",
["((l::int) * m) div n", "(l::int) div (m * n)"],
K IntDivCancelFactor.proc),
("divide_cancel_factor",
["((l::'a::{division_by_zero,field,number_ring}) * m) / n",
"(l::'a::{division_by_zero,field,number_ring}) / (m * n)"],
K DivideCancelFactor.proc)];
end;
Addsimprocs cancel_factors;
(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Asm_simp_tac 1));
test "x*k = k*(y::int)";
test "k = k*(y::int)";
test "a*(b*c) = (b::int)";
test "a*(b*c) = d*(b::int)*(x*a)";
test "(x*k) div (k*(y::int)) = (uu::int)";
test "(k) div (k*(y::int)) = (uu::int)";
test "(a*(b*c)) div ((b::int)) = (uu::int)";
test "(a*(b*c)) div (d*(b::int)*(x*a)) = (uu::int)";
*)
(*And the same examples for fields such as rat or real:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Asm_simp_tac 1));
test "x*k = k*(y::rat)";
test "k = k*(y::rat)";
test "a*(b*c) = (b::rat)";
test "a*(b*c) = d*(b::rat)*(x*a)";
test "(x*k) / (k*(y::rat)) = (uu::rat)";
test "(k) / (k*(y::rat)) = (uu::rat)";
test "(a*(b*c)) / ((b::rat)) = (uu::rat)";
test "(a*(b*c)) / (d*(b::rat)*(x*a)) = (uu::rat)";
(*FIXME: what do we do about this?*)
test "a*(b*c)/(y*z) = d*(b::rat)*(x*a)/z";
*)