(* Author: Tobias Nipkow *)
(* Todo:
(min_)height of balanced trees via floorlog
minimal path_len of balanced trees
*)
section \<open>Binary Tree\<close>
theory Tree
imports Main
begin
datatype 'a tree =
is_Leaf: Leaf ("\<langle>\<rangle>") |
Node (left: "'a tree") (val: 'a) (right: "'a tree") ("(1\<langle>_,/ _,/ _\<rangle>)")
where
"left Leaf = Leaf"
| "right Leaf = Leaf"
datatype_compat tree
text\<open>Can be seen as counting the number of leaves rather than nodes:\<close>
definition size1 :: "'a tree \<Rightarrow> nat" where
"size1 t = size t + 1"
lemma size1_simps[simp]:
"size1 \<langle>\<rangle> = 1"
"size1 \<langle>l, x, r\<rangle> = size1 l + size1 r"
by (simp_all add: size1_def)
lemma size1_ge0[simp]: "0 < size1 t"
by (simp add: size1_def)
lemma size_0_iff_Leaf: "size t = 0 \<longleftrightarrow> t = Leaf"
by(cases t) auto
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)"
by (cases t) auto
lemma finite_set_tree[simp]: "finite(set_tree t)"
by(induction t) auto
lemma size_map_tree[simp]: "size (map_tree f t) = size t"
by (induction t) auto
lemma size1_map_tree[simp]: "size1 (map_tree f t) = size1 t"
by (simp add: size1_def)
subsection "The Height"
class height = fixes height :: "'a \<Rightarrow> nat"
instantiation tree :: (type)height
begin
fun height_tree :: "'a tree => nat" where
"height Leaf = 0" |
"height (Node t1 a t2) = max (height t1) (height t2) + 1"
instance ..
end
lemma height_0_iff_Leaf: "height t = 0 \<longleftrightarrow> t = Leaf"
by(cases t) auto
lemma height_map_tree[simp]: "height (map_tree f t) = height t"
by (induction t) auto
lemma size1_height: "size t + 1 \<le> 2 ^ height (t::'a tree)"
proof(induction t)
case (Node l a r)
show ?case
proof (cases "height l \<le> height r")
case True
have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp
also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1))
also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2))
also have "(2::nat) ^ height l \<le> 2 ^ height r" using True by simp
finally show ?thesis using True by (auto simp: max_def mult_2)
next
case False
have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp
also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1))
also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2))
also have "(2::nat) ^ height r \<le> 2 ^ height l" using False by simp
finally show ?thesis using False by (auto simp: max_def mult_2)
qed
qed simp
corollary size_height: "size t \<le> 2 ^ height (t::'a tree) - 1"
using size1_height[of t] by(arith)
fun min_height :: "'a tree \<Rightarrow> nat" where
"min_height Leaf = 0" |
"min_height (Node l _ r) = min (min_height l) (min_height r) + 1"
lemma min_hight_le_height: "min_height t \<le> height t"
by(induction t) auto
lemma min_height_map_tree[simp]: "min_height (map_tree f t) = min_height t"
by (induction t) auto
lemma min_height_le_size1: "2 ^ min_height t \<le> size t + 1"
proof(induction t)
case (Node l a r)
have "(2::nat) ^ min_height (Node l a r) \<le> 2 ^ min_height l + 2 ^ min_height r"
by (simp add: min_def)
also have "\<dots> \<le> size(Node l a r) + 1" using Node.IH by simp
finally show ?case .
qed simp
subsection \<open>Complete\<close>
fun complete :: "'a tree \<Rightarrow> bool" where
"complete Leaf = True" |
"complete (Node l x r) = (complete l \<and> complete r \<and> height l = height r)"
lemma complete_iff_height: "complete t \<longleftrightarrow> (min_height t = height t)"
apply(induction t)
apply simp
apply (simp add: min_def max_def)
by (metis le_antisym le_trans min_hight_le_height)
lemma size1_if_complete: "complete t \<Longrightarrow> size1 t = 2 ^ height t"
by (induction t) auto
lemma size_if_complete: "complete t \<Longrightarrow> size t = 2 ^ height t - 1"
using size1_if_complete[simplified size1_def] by fastforce
lemma complete_if_size: "size t = 2 ^ height t - 1 \<Longrightarrow> complete t"
proof (induct "height t" arbitrary: t)
case 0 thus ?case by (simp add: size_0_iff_Leaf)
next
case (Suc h)
hence "t \<noteq> Leaf" by auto
then obtain l a r where [simp]: "t = Node l a r"
by (auto simp: neq_Leaf_iff)
have 1: "height l \<le> h" and 2: "height r \<le> h" using Suc(2) by(auto)
have 3: "~ height l < h"
proof
assume 0: "height l < h"
have "size t = size l + (size r + 1)" by simp
also note size_height[of l]
also note size1_height[of r]
also have "(2::nat) ^ height l - 1 < 2 ^ h - 1"
using 0 by (simp add: diff_less_mono)
also have "(2::nat) ^ height r \<le> 2 ^ h" using 2 by simp
also have "(2::nat) ^ h - 1 + 2 ^ h = 2 ^ (Suc h) - 1" by (simp)
also have "\<dots> = size t" using Suc(2,3) by simp
finally show False by (simp add: diff_le_mono)
qed
have 4: "~ height r < h"
proof
assume 0: "height r < h"
have "size t = (size l + 1) + size r" by simp
also note size_height[of r]
also note size1_height[of l]
also have "(2::nat) ^ height r - 1 < 2 ^ h - 1"
using 0 by (simp add: diff_less_mono)
also have "(2::nat) ^ height l \<le> 2 ^ h" using 1 by simp
also have "(2::nat) ^ h + (2 ^ h - 1) = 2 ^ (Suc h) - 1" by (simp)
also have "\<dots> = size t" using Suc(2,3) by simp
finally show False by (simp add: diff_le_mono)
qed
from 1 2 3 4 have *: "height l = h" "height r = h" by linarith+
hence "size l = 2 ^ height l - 1" "size r = 2 ^ height r - 1"
using Suc(3) size_height[of l] size_height[of r] by (auto)
with * Suc(1) show ?case by simp
qed
lemma complete_iff_size: "complete t \<longleftrightarrow> size t = 2 ^ height t - 1"
using complete_if_size size_if_complete by blast
text\<open>A better lower bound for incomplete trees:\<close>
lemma min_height_le_size_if_incomplete:
"\<not> complete t \<Longrightarrow> 2 ^ min_height t \<le> size t"
proof(induction t)
case Leaf thus ?case by simp
next
case (Node l a r)
show ?case (is "?l \<le> ?r")
proof (cases "complete l")
case l: True thus ?thesis
proof (cases "complete r")
case r: True
have "height l \<noteq> height r" using Node.prems l r by simp
hence "?l < 2 ^ min_height l + 2 ^ min_height r"
using l r by (simp add: min_def complete_iff_height)
also have "\<dots> = (size l + 1) + (size r + 1)"
using l r size_if_complete[where ?'a = 'a]
by (simp add: complete_iff_height)
also have "\<dots> \<le> ?r + 1" by simp
finally show ?thesis by arith
next
case r: False
have "?l \<le> 2 ^ min_height l + 2 ^ min_height r" by (simp add: min_def)
also have "\<dots> \<le> size l + 1 + size r"
using Node.IH(2)[OF r] l size_if_complete[where ?'a = 'a]
by (simp add: complete_iff_height)
also have "\<dots> = ?r" by simp
finally show ?thesis .
qed
next
case l: False thus ?thesis
proof (cases "complete r")
case r: True
have "?l \<le> 2 ^ min_height l + 2 ^ min_height r" by (simp add: min_def)
also have "\<dots> \<le> size l + (size r + 1)"
using Node.IH(1)[OF l] r size_if_complete[where ?'a = 'a]
by (simp add: complete_iff_height)
also have "\<dots> = ?r" by simp
finally show ?thesis .
next
case r: False
have "?l \<le> 2 ^ min_height l + 2 ^ min_height r"
by (simp add: min_def)
also have "\<dots> \<le> size l + size r"
using Node.IH(1)[OF l] Node.IH(2)[OF r] by (simp)
also have "\<dots> \<le> ?r" by simp
finally show ?thesis .
qed
qed
qed
subsection \<open>Balanced\<close>
definition balanced :: "'a tree \<Rightarrow> bool" where
"balanced t = (height t - min_height t \<le> 1)"
text\<open>Balanced trees have optimal height:\<close>
lemma balanced_optimal:
fixes t :: "'a tree" and t' :: "'b tree"
assumes "balanced t" "size t \<le> size t'" shows "height t \<le> height t'"
proof (cases "complete t")
case True
have "(2::nat) ^ height t - 1 \<le> 2 ^ height t' - 1"
proof -
have "(2::nat) ^ height t - 1 = size t"
using True by (simp add: complete_iff_height size_if_complete)
also note assms(2)
also have "size t' \<le> 2 ^ height t' - 1" by (rule size_height)
finally show ?thesis .
qed
thus ?thesis by (simp add: le_diff_iff)
next
case False
have "(2::nat) ^ min_height t < 2 ^ height t'"
proof -
have "(2::nat) ^ min_height t \<le> size t"
by(rule min_height_le_size_if_incomplete[OF False])
also note assms(2)
also have "size t' \<le> 2 ^ height t' - 1" by(rule size_height)
finally show ?thesis
using power_eq_0_iff[of "2::nat" "height t'"] by linarith
qed
hence *: "min_height t < height t'" by simp
have "min_height t + 1 = height t"
using min_hight_le_height[of t] assms(1) False
by (simp add: complete_iff_height balanced_def)
with * show ?thesis by arith
qed
subsection \<open>Path length\<close>
text \<open>The internal path length of a tree:\<close>
fun path_len :: "'a tree \<Rightarrow> nat" where
"path_len Leaf = 0 " |
"path_len (Node l _ r) = path_len l + size l + path_len r + size r"
lemma path_len_if_bal: "complete t
\<Longrightarrow> path_len t = (let n = height t in 2 + n*2^n - 2^(n+1))"
proof(induction t)
case (Node l x r)
have *: "2^(n+1) \<le> 2 + n*2^n" for n :: nat
by(induction n) auto
have **: "(0::nat) < 2^n" for n :: nat by simp
let ?h = "height r"
show ?case using Node *[of ?h] **[of ?h] by (simp add: size_if_complete Let_def)
qed simp
subsection "The set of subtrees"
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where
"subtrees \<langle>\<rangle> = {\<langle>\<rangle>}" |
"subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)"
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t"
by (induction t)(auto)
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t"
by (induction t) auto
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t"
by (metis Node_notin_subtrees_if)
subsection "List of entries"
fun preorder :: "'a tree \<Rightarrow> 'a list" where
"preorder \<langle>\<rangle> = []" |
"preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r"
fun inorder :: "'a tree \<Rightarrow> 'a list" where
"inorder \<langle>\<rangle> = []" |
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r"
text\<open>A linear version avoiding append:\<close>
fun inorder2 :: "'a tree \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"inorder2 \<langle>\<rangle> xs = xs" |
"inorder2 \<langle>l, x, r\<rangle> xs = inorder2 l (x # inorder2 r xs)"
lemma set_inorder[simp]: "set (inorder t) = set_tree t"
by (induction t) auto
lemma set_preorder[simp]: "set (preorder t) = set_tree t"
by (induction t) auto
lemma length_preorder[simp]: "length (preorder t) = size t"
by (induction t) auto
lemma length_inorder[simp]: "length (inorder t) = size t"
by (induction t) auto
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)"
by (induction t) auto
lemma inorder_map: "inorder (map_tree f t) = map f (inorder t)"
by (induction t) auto
lemma inorder2_inorder: "inorder2 t xs = inorder t @ xs"
by (induction t arbitrary: xs) auto
subsection \<open>Binary Search Tree predicate\<close>
fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where
"bst \<langle>\<rangle> \<longleftrightarrow> True" |
"bst \<langle>l, a, r\<rangle> \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)"
text\<open>In case there are duplicates:\<close>
fun (in linorder) bst_eq :: "'a tree \<Rightarrow> bool" where
"bst_eq \<langle>\<rangle> \<longleftrightarrow> True" |
"bst_eq \<langle>l,a,r\<rangle> \<longleftrightarrow>
bst_eq l \<and> bst_eq r \<and> (\<forall>x\<in>set_tree l. x \<le> a) \<and> (\<forall>x\<in>set_tree r. a \<le> x)"
lemma (in linorder) bst_eq_if_bst: "bst t \<Longrightarrow> bst_eq t"
by (induction t) (auto)
lemma (in linorder) bst_eq_imp_sorted: "bst_eq t \<Longrightarrow> sorted (inorder t)"
apply (induction t)
apply(simp)
by (fastforce simp: sorted_append sorted_Cons intro: less_imp_le less_trans)
lemma (in linorder) distinct_preorder_if_bst: "bst t \<Longrightarrow> distinct (preorder t)"
apply (induction t)
apply simp
apply(fastforce elim: order.asym)
done
lemma (in linorder) distinct_inorder_if_bst: "bst t \<Longrightarrow> distinct (inorder t)"
apply (induction t)
apply simp
apply(fastforce elim: order.asym)
done
subsection "The heap predicate"
fun heap :: "'a::linorder tree \<Rightarrow> bool" where
"heap Leaf = True" |
"heap (Node l m r) =
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))"
subsection "Function \<open>mirror\<close>"
fun mirror :: "'a tree \<Rightarrow> 'a tree" where
"mirror \<langle>\<rangle> = Leaf" |
"mirror \<langle>l,x,r\<rangle> = \<langle>mirror r, x, mirror l\<rangle>"
lemma mirror_Leaf[simp]: "mirror t = \<langle>\<rangle> \<longleftrightarrow> t = \<langle>\<rangle>"
by (induction t) simp_all
lemma size_mirror[simp]: "size(mirror t) = size t"
by (induction t) simp_all
lemma size1_mirror[simp]: "size1(mirror t) = size1 t"
by (simp add: size1_def)
lemma height_mirror[simp]: "height(mirror t) = height t"
by (induction t) simp_all
lemma inorder_mirror: "inorder(mirror t) = rev(inorder t)"
by (induction t) simp_all
lemma map_mirror: "map_tree f (mirror t) = mirror (map_tree f t)"
by (induction t) simp_all
lemma mirror_mirror[simp]: "mirror(mirror t) = t"
by (induction t) simp_all
end